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Who Pays When Drones Crash? 
 

  Henry H. Perritt, Jr. 

 

I. A (Hypothetical) Lawsuit 
A. The Plaintiff’s Story 

Traynor Birmingham, a promising young college athlete, was riding his Honda motorcycle in the 
middle lane of I-75 on a sunny Thursday in May. He was alongside Mary Carol when she 
suddenly swerved and hit his motorcycle, causing him to lose control and strike a nearby bridge 
abutment. The force of the motorcycle against the abutment severed his left leg above the knee. 
Only the quick action by other motorists and the quick response by paramedics prevented him 
from bleeding to death. He has undergone several surgical procedures to shape the stump of his 
leg so it will fit in a prosthesis without too much pain and hours of rehabilitation to learn how to 
walk again. He remains as active as he can, but any thoughts of a career as a professional football 
player are over. He has mastered the prosthesis but he still experiences pain and emotional 
distress occasionally when the device needs adjustment or skin breakdown necessitates his 
moving about on crutches, exposing him to pity and underestimation of his abilities.  
Defendant Spencer Hagan was flying a small unmanned aircraft, popularly known as a “drone,” 
on the day of the accident. The drone fell directly on the windshield of the Toyota Camry being 
driven by Mary Carol. The drone did not penetrate the windshield, but was deflected down to the 
pavement, where it was crushed by a following vehicle. Startled, Carol swerved her car into the 
plaintiff.  

Evidence will show that Hagan flew the drone carelessly and recklessly in a number of regards. 
First, he selected this particular model drone and continued to use it even though it had a 
reputation for erratic behavior. He violated the FAA rules for small commercial drone flight, 
contained in part 107 of the Federal Aviation Regulations by failing to conduct a sufficient 
preflight investigation to determine that the drone would fly correctly and safely on the occasion 
of the accident. He was also flying the drone at a height and position from which a failure in the 
drone’s navigation control system, such as occurred on the occasion of the accident, was likely to 
cause the drone to fall on the expressway where it would endanger the occupants of the motor 
vehicles.  

B. The Operator’s Story 

Spencer Hagan is an extremely careful pilot. Struck with an enthusiasm for aviation when he was 
in high school, he majored in Professional Flight Management at Auburn University and earned 
his commercial pilot’s license. Auburn is a leader in civilian drone studies and Hagan took all the 
drone courses that he could find. When the FAA issued general regulations for commercial drone 
flight in 2016, Hagan was among the first to qualify as a remote pilot with a small unmanned 
aircraft rating, earning 98% on the FAA's test. After passing the test, he regularly practiced with 
new models of drones and offered to teach others best practices for flying them safely. He 
virtually memorized the manufacturer’s flight manual, which will be evident from his testimony.  
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On the day of the accident, Hagan had briefed his customer, a general contractor erecting a new 
shopping center, on the rules for a drone survey of the site. Though he was not required to do so, 
he made sure that the contractor had room for a visual observer. His individual observer, 
Bradford Cannon, also had his remote pilot certificate and several hundred hours of experience 
in flying drones. Hagan checked the weather carefully and determined that the winds were light 
and forecast to remain so, that only high clouds could be expected, and that no precipitation was 
due.  

The purpose of the mission was to survey the construction site, more particularly to get aerial 
imagery from which a detailed grid could be developed to show how much earth needed to be 
removed and added on different portions of the site to produce a level surface suitable for a 
foundation. The process of leveling is known in the construction on the street as making cuts and 
fills. The way this was to be accomplished involved, first, installing supplementary surveying 
software on the drone, and then, launching it and flying it along the boundary of the area to be 
surveyed. Once these preliminary steps were complete, the operator would activate the survey 
software, and the survey software, working in conjunction with the navigation and attitude 
control systems that came with the drone, would cause the drone to fly a series of closely spaced 
flights along one dimension of the field and take a still photograph at one or two second intervals 
as it flew. Each photograph would be accompanied by a sonar image of the ground below, which 
would enable the exact height of different parts of the image to be determined. 

After the flight, the images could be uploaded to the surveying service’s web servers, which 
would stitch them together and produce a comprehensive topographical map of the area. Spencer 
and Bradford had practiced using the surveying software and were completely familiar with its 
functions, knew how to set its options, and also had practiced recovering from emergency 
situations.  
The drone vendor had aggressively advertised the availability of surveying software and sold its 
drones packaged with the surveying software as a bundle.  
The printed documentation for the drone comprised a four-page fold out. Purchasers were 
referred to the vendor’s website for more detailed documentation. The online documentation was 
poorly translated into English from Chinese, with many grammatical errors and awkward 
phrasing that obscured its meaning. It had the equivalent of three pages of material on 
emergencies, which combined battery exhaustion, failure to obtain a GPS lock before launching, 
and failure to calibrate the compass before launching. There was nothing in the manual or on the 
website about use of the surveying software increasing the likelihood of a fly-away.  

The vendor provided email, chat, and telephone support, but on several occasions Spencer 
experienced great difficulty in getting technical support when had questions about installing new 
software. Emails and text messages went unanswered or prompted Spencer to make a phone call. 
Telephone hold-times often exceeded one hour and often resulted in disconnections before a 
support agent picked up. On the few occasions when Spencer talked to a support person, he 
could not get beyond rote recitation of instructions to reinstall the software and reboot the drone. 
Before he flew the mission that resulted in the accident, he persisted until he talked to a support 
agent and requested information about anomalies and operation of the drone with the survey 
software. He was told that the vendor knew of no problems.  
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On the occasion of the accident, Spencer and Bradford conferred and agreed that they would 
define the perimeter of the flight path by flying the drone slightly outside the actual legal 
boundary of the construction area. They did a preflight inspection according to the drone’s 
downloaded manual, confirmed the absence of damage, looseness, or maladjustments to physical 
components, confirmed that all systems were functioning properly, double checked the settings 
for safety protocols such as return to home, land-immediately, and the geo-fencing for height and 
horizontal limits. All settings were well within the parameters allowed by Part 107 of the Federal 
Aviation Regulations. 
They then launched the drone along the agreed-upon boundary. Spencer sought and received 
Bradford's confirmation that they were ready to trigger the automatic performance of the 
mission. Spencer tapped the requisite icon for the flight software and the drone began the flight 
by climbing to 200 feet above the survey site and flying the outbound portion of its first flight 
leg. When it reached the boundary at which it should have turned around and begun to fly the 
second leg back, it instead continued, accelerated, and began to climb. Spencer provided the 
necessary control inputs to terminate execution of the surveying software and to regain manual 
control. His commands had no effect. He tried multiple ways to activate the return to home 
feature. No effect. Finally, he activated the combination of control inputs that was supposed to 
stop the engines immediately and cause the drone to fall directly downward. No effect. The 
drone was, by then, nearly out of sight, and the indication on Spencer’s console was that the 
radio signal comprising the control link was weakening. 

C. The Vendor’s Story  

To claim that the defendant’s design and manufacture of the drone caused this tragic accident 
requires stretching imagination beyond the breaking point. First, the defendant was entirely 
without fault in the design of the drone and all of its subsystems. There's actually very little to 
distinguish the drone’s technologically from at least a half-dozen other models with which it 
competes. It is an electrically powered quadcopter with a battery life of about 30 minutes, 
capable of a maximum speed of 30 knots. It has automatic control systems that permit it to hover 
over one spot on the ground automatically, regardless of wind condition, automatically take off 
and land, fly a pre-programmed path defined by the operator, circle or orbit a chosen object, and 
to return to home either at the command of the operator or when its on board systems detect a 
loss of radio control link or impending battery exhaustion, represented by depletion of 75% of 
the total charge.  
The defendant does little more than assemble off-the-shelf components designed and produced 
by other entities and readily available in the marketplace for drones and model aircraft. This is 
true of the battery, the navigation control board, the power control board, the motors, the rotor 
blades, the body, the radio control receiver and transmitter on both the drone and the operator 
console, and the gimbal, camera, and transmitter for sending video imagery to the drone operator 
or a separate photographer on the ground. Any shortcoming in the design or performance of 
these components is the fault not of defendant, but of the vendors of these components. 

The defendant seeks to enhance its competitive position in the marketplace not by any unique 
capabilities or features of its product, but by creative advertising and product support that 
enables inexperienced purchasers to get good results.  
Second, and most important, any failure in the drone or its subsystems was not the legal cause of 



 

Spring 2017 www.lawtechjournal.com Volume 21, Issue 1 

 4 

the accident. The accident occurred because Mr. Birmingham was riding alongside Ms. Carol’s 
vehicle, in her blind spot, for an unnecessarily long time. He should have known that if she 
changed lanes, she would not see him and very well might hit him.  

Ms. Carol is an unskilled driver. She suffers considerable anxiety whenever she's driving on the 
expressway. The impact of the drone on her windshield, while no doubt startling, created no 
danger to her. Her automobile immediately deflected the drone down and away from the car, 
where it represented no further threat. Nevertheless, Ms. Carol wildly wrenched her steering 
wheel and accelerated, causing her to strike Mr. Birmingham's motorcycle. She had failed to 
keep a proper lookout for nearby vehicles and thus was unaware of his presence.  

The accident also would not have occurred had Mr. Hagan flown the drone in a prudent and 
careful manner, in accordance with the standards usually followed by skilled commercial drone 
operators. He unaccountably manipulated the controls so as to cause the drone to fly outside the 
boundaries of the property he was surveying, and at the same time failed to fly at sufficient 
height to avoid objects on the ground. He failed to follow the detailed preflight inspection 
procedures set forth in the operating manual. If he had followed them, he would have discovered 
any anomalies in the drone’s automatic flight control systems and, if he had followed the 
instructions in the manual, he would have postponed the flight until he had corrected the 
anomalies.  

D. The Moral of the Story 

The three different stories about the same accident illustrate what every good trial lawyer knows: 
the best way to be successful at trial is to take the facts that already exist and weave them into a 
story that follows principles for a good narrative.2 A ”good” narrative is measured by its 
tendency to persuade the fact finder to understand the facts in a way that benefits one litigant as 
opposed to the others.3 
The little stories related above show the plaintiff giving an account in which he is blameless 
while the defendants are heedless of the risks to him. They also illustrate how each defendant 
then seeks to shift responsibility to other defendants and back to the plaintiff. Those basic 
precepts and principles of storytelling in the legal context will not change when drones crash and 
lawsuits result. 

II. Introduction 
In his 1942 short story, “Runaround,” Isaac Asimov set forth three “laws” for robots: 

1. A robot may not injure a human being, or, through inaction, allow a human being to 
come to harm.  

                                                
2 See, Henry H. Perritt, Jr., Technologies of Storytelling: New Models for Movies, 10 VA. SPORTS & ENT. 
L.J. 106 (2010) (illustrating Scribean principles); Kate Wright, The Five S's of Screenwriting: Principles 
Of Storytelling, MOVIE OUTLINE, http://www.movieoutline.com/articles/storytelling-principles-for-
screenwriting.html#.WCecL2-ZU7c.email. 
3 See, PHILIP N. MEYER, STORYTELLING FOR LAWYERS (2014). 
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2. A robot must obey the orders given it by human beings except where such orders would 
conflict with the First Law.  

3. A robot must protect its own existence as long as such protection does not conflict with 
the First or Second Law. 

Later, Asimov introduced a more basic law, sometimes numbered fourth, sometimes zeroth, 
which outranked the others:  

0.  A robot may not harm humanity, or, by inaction, allow humanity to come to harm.4  
Asimov was addressing the terms under which robots might participate in everyday life. His 
purpose was to entertain by imagining a future that did not exist.5 
Now, Asimov’s future exists in small robots’ colloquially called “drones” buzzing about by the 
hundreds of thousands and automobile manufacturers’ jockeying for who will be the first to 
market a driverless car. American railroads have reluctantly committed $ 7 billion to automate 
the control of railroad trains.  
These automated systems have caused few accidents to date,6 but more will come. When they do, 
the courts will have to sort out who pays for the cost of the accident. The law has worked out a 
detailed set of doctrines to adjudicate products liability, and its basic outlines are clear: an actor 
is liable for the injuries caused by its defective products. No longer is an accident likely to have 
resulted from the separation of a massive connecting rod on a 300-ton steam locomotive. Now, 
an accident is more likely to occur because of a glitch in the execution of computer code in an 
integrated circuit chip about the size of a fingernail. Design defects are less likely to involve the 
collapse of a bridge, and more like to involve the flyaway of a 2-pound drone into parts 
unknown, as it is escapes control by its master. 
This article argues that lawyers, policymakers, and entrepreneurs must readjust their thinking to 
focus on new ways in which errant technology causes injury. The functioning of new 
technologies in the real world is inherently uncertain and unpredictable. Post-sale technical 
support of products play an important role in ensuring safe operation. Vendors should face the 
consequences of inadequate technical support because their product cannot be operated safely 
without continuing and competent support.  
The article recognizes that a policy bargain must be struck: law should get out of the way so that 
society gets the benefit of new robots without waiting for regulators to guess the future. The law 

                                                
4 Do We Need Asimov's Laws?, MIT TECH. REV., (May 16, 2014), 
https://www.technologyreview.com/s/527336/do-we-need-asimovs-laws/ (quoting Asimov and reviewing 
skeptics of need for his “laws”). 
5 F. Patrick Hubbard, Regulation Of And Liability For Risks Of Physical Injury From “Sophisticated 
Robots,” WE ROBOTS 6, n.17 (April 21, 2012) (for presentation as a work-in-progress at We Robot 
Conference), 
http://robots.law.miami.edu/wp-content/uploads/2012/01/Hubbard_Sophisticated-Robots-Draft-1.pdf 
(quoting Asimov to motivate an analysis rules for liability for robot mishaps). 
6 One of the most publicized examples of such an accident involved a Tesla automobile. The fatal 
accident apparently resulted from driver inattention to an auto pilot blindspot that caused him to ignore a 
semi-trailer truck making an illegal turn in front of the car and smashing into the truck at full highway 
speed. 
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should also hold designers and vendors accountable for supporting new uses and covering the 
cost of accidents. Sale does not relieve manufacturers and distributors of their legal duty. 
The growing importance of robotics shifts the responsibility for avoiding product defects away 
from mechanical and aeronautical engineers and places it on software engineers. The products 
the engineers design are less tangible then mechanical objects, but their characteristics 
nevertheless result from conscious design choices. The design choices implicate risk, because 
they may increase or decrease the vulnerability of a subsystem to programming bugs, or because 
it affects risk associated with environmental conditions.  
Assuring the reliability of these products involves testing. In that respect, the shift toward 
robotics makes no difference in designing to manage risk. Indeed, the growing number of 
products liability claims involving pharmaceuticals represents a greater shift in emphasis, from 
the mechanical and electronic world to the world of biochemistry. Nevertheless, pharmaceutical 
product liability litigation has less to do with the different nature of the design and 
manufacturing processes than with mass marketing of products that are consumed, eliminating 
much of the tangible evidence available when machines cause injury.  

Personal injury lawyers, especially those specializing in mass-tort cases, long have had to 
understand enough of the physics of accidents to deploy appropriate expert and fact witnesses to 
prove what went wrong in an accident.7 In a more robotic world lawyer understanding must 
encompass the behavior of electrons and radio waves in the physical world as well as the 
behavior of large mechanical objects. A bug in the execution of a computer program is likely to 
be more important in evaluating causation than the forces that produce a skid on pavement. 
Robotics requires, not so much a change in legal doctrine, as a change in factual investigation 
and evidence presentation, including careful review of error logs, forensic testing, and evaluating 
of the software engineering design process. 
This article starts with hypothetical opening arguments by the opposing parties in a lawsuit that 
has resulted from a drone accident. It then explains the likely issues when drone automation runs 
amok, presenting the leading edge of issues that will occur in every transportation mode as 
robotics plays a greater role in the lives of professional pilots, engineers, drivers, and masters. 
That section explains why drones are a good way to begin thinking about how the law will sort 
out legal responsibility for mishaps. Collectively, robotics in the different modes illustrate 
different aspects of the legal challenge. Cockpit automation,8 well advanced, illustrates the 
evolution of human operators from operators to automation monitors. Positive Train Control 
(“PTC”)9 in the railroad industry illustrates the interdependency of different subsystems with 
different legacies, vendors, and purposes. Automation of ocean-going ships illustrates how the 
market, free of regulatory constraints will adopt robotic technology for transportation. The 
balance between robot and remote-pilot-operator responsibilities represents the logical extension 

                                                
7 See, Loren Peck, How Sound is the Science? Applying Daubert to Biomechanical Experts’ Injury 
Causation Opinions, 73 WASH. & LEE L. REV. 1063, 1090-96 (2016) (explaining engineering calculations 
typically used in accident reconstruction). 
8 See, § III.A.1. 
9 See, § III.B. 
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of what has been happening with cockpit automation to drones.10 Eventually the balance and the 
law’s allocation of accountability will be extended to road vehicle systems.11 
The article then moves to a major section reviewing the basic doctrines in tort law for allocating 
liability when several actors’ conduct has played a role in causing injury, reviewing cases drawn 
from the several different transportation modes involving plaintiff contingents against operators, 
designers, and manufacturers. Next, a short section explains why, contrary to the views of many 
participants in the market, making a collaborator an independent contractor instead of an 
employee or a partner does little to change the outcome of lawsuits. This analysis identifies the 
kinds of fault likely to be involved and reviews the economics that will determine how many 
lawsuits were filed and how vigorously they are pursued.  
The cases analyzed in the article illustrate controversies about automation in all transportation 
modes: maritime, automotive, aviation, and rail. The existence of the cases reinforces the 
intuition that, as drones proliferate, litigation over accidents involving automation is not far off.  

III. Automation’s Progress in the Different Transportation Modes 
Automation of all modes of transportation is occurring rapidly. Hardly a day passes without a 
news story about self-driving cars.12 The aviation industry is under a mandate to equip all of its 
aircraft with ADS-B technology by 2020, which enables every aircraft to transmit its position to 
other aircraft and the air traffic control system every second.13 Amazon is aggressively pushing 
for a low-level automated air navigation system that will permit small drones to deliver 
merchandise.14 The railroads are well along on a Congressionally-mandated, nationwide, positive 
train control (PTC) system, which permits passenger and freight trains, signals and switches, 
maintenance personnel, and dispatchers to exchange data on a real-time basis to avoid collisions 
and derailments.15 

                                                
10 See, § III.A.2. 
11 See, § III.C. 
12 See, e.g, Mike Isaac, Uber Defies California Regulators with Self-Driving Car Service, N.Y. TIMES 
(Dec. 16, 2016), http://www.nytimes.com/2016/12/16/technology/uber-defies-california-regulators-with-
self-driving-car-service.html?_r=0/; Adrienne Lafrance, Self-Driving Cards Could Save 300,000 Lives 
Per Decade in America, THE ATLANTIC, Sep. 29, 2015, 
https://www.theatlantic.com/technology/archive/2015/09/self-driving-cars-could-save-300000-lives-per-
decade-in-america/407956/, Tim Adams, Self-driving cars: from 2020 you will become a permanent 
backseat driver, THE GUARDIAN, Sep. 13, 2015, 
https://www.theguardian.com/technology/2015/sep/13/self-driving-cars-bmw-google-2020-driving, Alex 
Davies, Uber’s self-driving crash proves we need self-driving cars, WIRED, Mar. 25, 2017, 
https://www.wired.com/2017/03/uber-self-driving-crash-tempe-arizona/. 
13 ADS-B Frequently Asked Questions, FED. AVIATION ADMIN., 
https://www.faa.gov/nextgen/programs/adsb/faq/ (last modified Feb. 07, 2017). 
14 Amazon Prime Air, AMAZON, https://www.amazon.com/Amazon-Prime-
Air/b?ie=UTF8&node=8037720011 (last visited Mar. 2, 2017). 
15 Positive Train Control, U.S. DEP’T TRASNP., FED. RAILROAD ADMIN., www.fra.gov/ptc (last visited 
Mar. 2, 2017). 
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None of these systems will function perfectly. Mishaps will occur, causing damage to property 
and loss of life. When these accidents do happen, the high-level of automation will pose new 
challenges for tort law in deciding whether to blame man or machine. If the machine is to blame, 
how does the law translate that culpability into meaningful judgments?  
Automation of all of the modes involves the same underlying technologies,16 but drones provide 
the best context for exploring the legal framework for assigning liability. All of these vehicle 
automation systems use the same basic components: GPS systems for determining position, 
inertial measurement units for determining attitude and supplementing position information, 
computerized automatic control systems to apply control inputs to stabilize direction and pace of 
movement, computerized navigation systems to determine course, and radio links to transmit 
telemetry from the vehicle to a control station on the ground and to transmit control commands 
from the control station to the vehicle. The functioning of each of these subsystems is similar, 
regardless of the type of vehicle in which it is installed. 

Three factors differ, however, depending on the mode: the maturity of the vehicle-specific 
technologies, the degree to which autonomous or remotely controlled vehicles are actually in 
service, and the centralization of control over the vehicles. Which mode provides the best model 
for considering common issues depends upon these differences. Drones stand out, compared with 
automobiles, trucks, and railroads. Drones are actually in service, while few cars and trucks are 
operating autonomously on ordinary roads. Only a few miles of railroad have operational PTC. 

Drone operational responsibility is diffused geographically and organizationally because smaller 
entities are involved in drone design, manufacture, and operations than in the corresponding 
activities for other modes. This diffusion of responsibility makes controversies over liability for a 
mishap more visible than is likely in larger, more integrated organizations such as Tesla or Union 
Pacific.17 
Traditional aviation case law is the starting point for drone accident analysis. Traditional aviation 
has well-developed tort doctrines for allocating responsibility among multiple actors: pilots, air 
traffic control specialists, manufacturers, and automated system designers.  

A. Aviation 
1. Cockpit Automation 

The aviation industry and the FAA recognize that aviation technology is shifting responsibility 
for managing flight. Increasingly, pilots spend less time operating the aircraft and more time 

                                                
16 Cross pollination among the modes will be the norm. The designs for each mode will be better and 
safer if the engineers making the design decisions are well-informed about automation of all the modes. A 
concept that has proven itself in the real world of the rail industry, for example, might be the right starting 
point for designing a subsystem to perform a similar function in a semi-trailer truck or a drone. 
17 Railroads also do not provide the best context for analysis because almost every everything that might 
be said to cause an accident is under the control of the railroad. The railroads have, for the most part, set 
up wholly-owned subsidiaries to design and deploy PTC technology. See FED. R.R. ADMIN., POSITIVE 
TRAIN CONTROL IMPLEMENTATION STATUS, ISSUES, AND IMPACTS 16 (2012) (describing PTC 220 LLC, 
consortium of NS, CSX, UP, and BNSF, which bought radio frequency spectrum for PTC). 



 

Spring 2017 www.lawtechjournal.com Volume 21, Issue 1 

 9 

monitoring the operation of robots that actually fly the aircraft, autopilots chief among them.18 
Increasingly, airplane and helicopter pilots are becoming system monitors rather than manual 
operators of the aircraft. As this occurs manual flying skills atrophy, and lack of proficiency in 
programming and controlling autopilots represent an increasing accident threat.19 
Autopilots, long common in commercial airplanes, are beginning to penetrate recreational 
general aviation and rotary wing operations. At the same time, the FAA’s management of the 
national airspace system is evolving under a policy concept known as "Next Generation." The 
FAA seeks to lessen reliance on ground based radio navigation facilities and radar and ground-
based air traffic controllers, and to increase reliance on GPS signals for defining airborne routes 
and for aircraft-to-aircraft data exchange to keep traffic separated so as to reduce the likelihood 
of collisions. A significant step in the implementation of Next Generation is the FAA’s mandate 
that all aircraft be equipped with ADS-B Out systems by 2020. ADS-B Out systems broadcast a 
data block containing the aircraft altitude, position, direction of flight, and speed whenever it 
receives a “ping” from another ADS-B Out equipped aircraft or from a ground station (which 
might be a conventional air traffic control radar station).  

Separate ADS-B In subsystems permit pilots to see on their navigational video displays all of the 
ADS-B Out equipped aircraft in the vicinity, with indications of whether they represent potential 
collision hazards. The ADS-B data can be fed into autopilots and all-encompassing flight control 
systems to enable various kinds of automatic collision avoidance maneuvers. Rarely do these 
systems take control over the aircraft; instead, they advise pilots of necessary collision avoidance 
actions.  

As the ADS-B Out mandate is implemented, aircraft designers are installing other features such 
as terrain proximity warning systems and flight-envelope limits, some of which take over control 
of the aircraft, or otherwise limit a pilot’s ability to provide unsafe control inputs.  

2. Drones 

Drones, more formally called “small unmanned aircraft,” are remotely controlled air vehicles. 
The most popular ones weigh less than 55 pounds and have multiple rotors driven by electric 
motors which are powered by LiPo batteries.20 The attitude of the aircraft is controlled by 
varying the electrical current provided to the different motors, thereby changing the RPM of that 
rotor and thus the thrust it generates. Controlling the thrust of the different rotors permits the 
vehicle to tilt and thus to turn, and to fly forward, backward, sideways, to climb and to descend. 
Like all rotorcraft, drones are capable of taking off and landing vertically.  
No human operator has the perceptive acuity or the reaction times to manage the differential 
thrust of the motors quickly and accurately enough, so a high degree of automation is necessary 
for these vehicles to be flyable at all. Pressure altimeters (barometric altimeters), magnetometers 
                                                
18 See MATTHEW E. HAMPTON, U.S. DEP’T TRANSP., FED. AVIATION ADMIN., OFFICE OF INSPECTOR 
GEN., FAA REPORT NO. AV-2016-013, ENHANCED FAA OVERSIGHT COULD REDUCE HAZARDS 
ASSOCIATED WITH INCREASED USE OF FLIGHT DECK AUTOMATION, (Jan 7, 2016). 
19 See id. at 1. 
20 See HENRY H. PERRITT, JR. & ELIOT O. SPRAGUE, DOMESTICATING DRONES: THE TECHNOLOGY, 
ECONOMICS, AND LAW OF UNMANNED AIRCRAFT SYSTEMS ch. 3 § 3.2, ch. 5 § 5.2.3 (2017) [hereinafter 
DOMESTICATING DRONES]. 
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(electric compasses), and accelerometers packaged into inertial measurement units (“IMUs”) 
permit on-board flight control systems to know the drone’s attitude spatially and the precise 
nature of its movement from millisecond-to-millisecond. Automatic control algorithms provide 
the electrical current changes necessary to conform the drone’s actual behavior to a desired 
behavior. Combining data about attitude with GPS signals allow the onboard systems to 
navigate, to fly the drone from point to point.21 
The operator, using a small console, does not control specific electrical inputs; rather, he, like the 
modern aircraft pilot is essentially a system monitor, telling the onboard automation where he 
wants the drone to go and how fast and how high.  

Virtually all drones have algorithms that give the drone the capability to execute emergency 
maneuvers autonomously. Most common, and found on virtually every small drone on the 
market, are autonomous hover, land immediately, and return to home.  

B. Rail Robots 

The railroad industry has the longest history with sophisticated robotics. In 1927, the New York 
Central Railroad deployed the first centralized traffic control, which had become commonplace 
on all railroads by the 1950s. Centralized traffic control permitted one train dispatcher to control 
signals and switches remotely at a distance of 200 miles, later growing to thousands of miles for 
multiple dispatchers located in the same place. Train dispatchers from a central location could set 
a signal and switch to divert a train onto a passing track so that another train could pass. Sensors 
associated with switch, signal, and track circuit sent telemetry back to the dispatcher so that he 
could determine the track configuration and the position of trains. The signals sent by the 
dispatcher conferred movement authority, eliminating the need for written train orders and 
telegraph operators whose job was to control movements onto railroad tracks at the end of every 
block.22  
The Interstate Commerce Commission (“ICC”) required automatic train control for high -speed 
passenger trains as early as the 1920s, which caused brakes to be applied automatically to a 
locomotive that passed a restricting signal without acknowledgment by the engineer. 

The nation’s railroads are required by statute to install a positive train control (“PTC”) system by 
2017.23  PTC combines GPS, track circuit, and geographic data from train locomotives, 
transceivers, and antennas. In doing so, it maintains real-time awareness of the position of every 
locomotive and track maintenance vehicle and the condition of every traffic control device such 
as a signal or a switch. System logic within PTC employs algorithms that detect hazardous train 
operations, such as proximity of one train to another on the same track, crew violation of signal 
indication, excessive speed that might cause derailments and other noncompliant vehicle 
operations.24  

                                                
21 See id. ch. 3 § 3.10.3.3. 
22 See generally, U.S. CONG., OFFICE OF TECH. ASSESSMENT, PB-254738, CHRONOLOGY OF TRAIN 
CONTROL DEVELOPMENT, Appx. E, https://www.princeton.edu/~ota/disk3/1976/7614/761414.PDF. 
23 See Positive Train Control Systems, 75 Fed. Reg. 2598 (Jan. 15, 2010) (to be codified at 49 C.F.R. pts. 
229, 234, 235, & 236). 
24 Limiting train speed through a particular switch is one example. 
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A wayside25 data communications subsystem communicates signal indications, switch position 
information, dragging-equipment detectors, landslide detectors, and hotbox detector readings 
from wayside sensors to nearby locomotives. It also communicates track occupancy telemetry 
from track-circuit sensors to signal subsystems, train dispatchers and nearby locomotives. 
Finally, it sends locomotive telemetry including GPS-based position information to wayside 
systems, other locomotives, and the dispatcher does the same thing for light engines and 
maintenance-of-way vehicles that might not trigger truck circuits.26 It includes, but goes far 
beyond the functionality of aviation’s ADS-B. 
The tasks to be performed in train dispatching roughly correspond to the tasks performed by air 
traffic control. Both involve clearances to spatially defined blocks and instructions and 
clearances given by personnel (e.g., railroad dispatchers and air traffic controllers) on the 
ground. Both train dispatching and air traffic control make use of fixed navigational facilities not 
involving voice communication, namely wayside signals for railroads and VORTAC27 and ILS28 
signals for aviation.  
There are, however, differences between the two systems. Remotely controlled wayside signals 
can communicate movement authority to railroad engineers; aviation navigation facilities cannot 
engage in this kind of communication.  

Still, Visual Flight Rules (VFR) in aviation roughly resemble restricted speed in railroading since 
both are concerned with line of sight to avoid collisions. ADS-B in NextGen aviation resembles 
PTC in that both involve telemetry sent by vehicles as to their position and speed. Both aviation 
and railroad modernization are proceeding by overlaying new technologies on legacy systems: 
ADS-B and GPS-based routes on top of ground-based radar and radio systems in the case of 
aviation; PTC on top of existing signaling and centralized traffic control systems for railroads; 
and overlaying data communication on top of voice for both. 

C. Automated Automobiles  

And trust me, my fellow lawyers, there are going to be a whole lot of car wrecks in 
Tennessee in the years to come. How do I know this?  Simple. Two words: 
driverless cars. 
. . . 

Within the next several years, driverless cars will be smashing into each other all 
over the Volunteer State, and at that point there will be a whole new wave of car 
wreck cases against sleeping occupants, driverless car manufacturers, or both.  

                                                
25 “Wayside” refers to something, such as a signal, that stands near, but not on, a railroad track. 
26 See generally FED. R.R. ADMIN., POSITIVE TRAIN CONTROL IMPLEMENTATION STATUS, ISSUES, AND 
IMPACTS (2012); NTSB Safety Recommendation, R-12-25 and -26 at 2 (May 10, 2012) 
https://www.ntsb.gov/safety/safety-recs/recletters/R-12-025-026.pdf (finding the absence of positive train 
control was contributing factor in collision between BNSF freight train and MOW equipment) 
27 Very high frequency Omni Range and Tactical distance measuring: a technology to allow a flying 
aircraft to determine the range and distance to a ground station. 
28 Instrument Landing System: a technology that allows the pilot of a descending aircraft to maintain his 
path on a specific approach angle to the runway. 



 

Spring 2017 www.lawtechjournal.com Volume 21, Issue 1 

 12 

. . . 

And so while Randy Kinnard, you and I, may not have any workers' comp or 
medical malpractice cases in the coming years, we'll have a whole bunch of car 
wreck lawsuits! At that point we lawyers will be in the driver's seat.29 

A variety of automatic safety features on automobiles and trucks long have been on the market. 
These features have been consolidated into the systems that permit a motor vehicle largely to 
drive itself such as maintaining its position in traffic lanes, maintaining a safe distance from 
other vehicles, automatically braking to avoid obstacles, and correcting for operator steering or 
braking errors that might cause skids or rollovers. The technology has reached a point where 
ordinary cars are capable of driving themselves for considerable distances without human input. 
The law already is hospitable to the technology.30 

The regulator of highway vehicles, the National Highway Traffic Safety Administration 
(NHTSA), is generally supportive of the technology’s potential to reduce accidents and to allow 
for safely increasing traffic density and therefore enlarging the capacity of the nation’s roads and 
highways. Research and testing is underway to determine the best regulatory approach to ensure 
safety. This includes expanding data on the actual behavior of existing vehicles, testing new 
autonomous functionality, and conducting statistical fault analysis to justify mandated reliability 
and performance standards. NHTSA and the automotive industry have adopted a classification 
system for grading the degree of autonomy, ranging from one to four. Level one vehicles are 
largely driven by a human operator aided by systems capable of performing some discrete 
functions automatically, such as mediating brake applications to prevent skidding, a capability 
commonly known as an automatic braking system. At the other end of the rating system, level 
four vehicles are capable of operating and navigating without human driver input from origin to 
destination. 
Debate is growing on how loss should be allocated when self-driving vehicles are involved in 
accidents.31 

D. Self-Navigating Ships 

Ships, whether designed for carrying cargo or passengers, have employed progressively more 
automation over the last century. Autopilots are commonplace, as are navigation systems that 
combine input from GPS signals, internal measurement units (“IMUs”) and celestial 

                                                
29 Bill Haltom, But Seriously Folks: The Solution to Tort Reform, 51 TENN. B. J. 34 (2015) (tongue-in-
cheek article by former state bar association president and tort lawyer on all the litigation that will result 
from driverless cars). 
30 See Spencer Peck et al, The SDVs Are Coming! An Examination of Minnesota Laws in Preparation for 
Self-Driving Vehicles, 16 MINN. J.L. SCI. & TECH. 843 (2015) (reviewing state law and concluding that 
self-driving cars are already legal in most states). 
31 See, e.g., Jessica S. Brodsky, Autonomous Vehicle Regulation: How an Uncertain Legal Landscape 
May Hit the Brakes on Self-Driving Cars, 31 BERKELEY TECH. L.J. 851, 859-867 (2016) (analyzing 
common law negligence and products liability doctrine, concluding that they are unsuitable for driverless 
cars, and recommending federal statute); See also Katelyn Sheinberg, Embracing the Imminent: Proposed 
Legislation for Automated Cars in Pennsylvania, 15 U. PITT. J. TECH. L. & POL'Y 265, 272 (2015) 
(advocating state legislation imposing strict liability on manufacturers of driverless cars). 
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observations by the crew. Ocean-going vessels have propulsion systems that employ 
sophisticated power management and fuel control systems. The typical propulsion system for a 
large container or cruise ship comprises diesel engines that drive generators. The generators, in 
turn, provide electricity to turn the motors connected to the shafts and screws.32 On cruise ships, 
about half of the electrical power is used, not for propulsion, but for the "hotel operations" such 
as lighting, heating, air-conditioning, and cooking.  
The technology has reached a point where self-navigating seagoing vessels are entirely 
feasible.33 The barriers to actual commercial deployment lie more in the regulatory and terrorism 
prevention regimes than in the engineering one. The singular characteristic of this industry is that 
navigation on the high seas is not within the regulatory power of any sovereign state.34 Thus, an 
operator believing that a level of autonomy in ship operations will serve the operator’s interests 
is free to deploy it without colliding with any regulatory probation.  

E. Architectural Similarities 

Whether in aviation, locomotive, automotive, or maritime, all robotic systems share 
characteristics that will change the way the law addresses responsibilities for defects. These 
characteristics will also change the way lawyers litigate accident claims. Automation strategies 
must sense the state of the environment and produce particular vehicle behavior that mitigates 
risk. Collisions with other vehicles and objects fixed to the ground must be avoided. That 
requires good sensors and smart autopilots. All modes depend on radio control and thus are 
vulnerable to phenomena that impede radio waves. All depend on an appropriate human/machine 
interface. For the law to assess legal liability, it must understand what can go wrong. 
Understanding what can go wrong requires understanding the underlying technologies. 
The purpose of the following section is to illustrate the various ways that the specific 
technologies that are important to robotics can fail. The technologies are the same regardless of 
mode; it is only their implementation that varies from mode to mode.35 

1. Radio and Its Weaknesses 
The robotic technologies for all of the modes use radio communication for some of their 

                                                
32 The shaft on a ship propulsion system delivers power from the engine to the screw. The screw is a 
propeller designed to deliver thrust under water when it turns. 
33 See Jane Wakefield, Rolls-Royce imagines a future of unmanned ships, BBC (Mar. 5, 2014) 
http://www.bbc.com/news/technology-26438661; Is 2017 the breakthrough year for unmanned vessels?, 
SHIP-TECHNOLOGY.COM, http://www.ship-technology.com/features/featureis-2017-the-breakthrough-
year-for-unmanned-vessels-5692723/ (reporting on demonstration programs to prove suitability of 
existing technology). 
34 See The International Regulation of Shipping, INTERNATIONAL CHAMBER OF SHIPPING, 
http://www.ics-shipping.org/shipping-facts/safety-and-regulation/the-regulation-of-international-shipping 
(explaining that nation states apply international standards). 
35 “Failure,” does not signify only that a device or a segment of computer code and has failed to perform 
its intended task function, but it may also signify that the wrong device or the wrong computer algorithm 
was selected. The transmitter and receiver on a 10 meter licensed radio link may work perfectly in 
transmitting and receiving signals, while the 10-meter frequency band is demonstrably inferior to the 1.2 
GHz band for drone control links because of the greater likelihood of interference on the 10-meter band. 
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functionality. Failure of radio communication is especially likely to cause accidents, so the 
following sections stress the behavior and vulnerabilities of the different radio technologies.  
The following table shows each type of radio communication used by the different modes and its 
relative importance.36 

 
The importance of voice and control-link radio communication varies inversely with the 
presence of an onboard operator. If the vehicle is entirely remote-controlled, the control link is of 
great importance, and voice communication is irrelevant because there is no one with which to 
communicate on the vehicle. 
On the microdrone systems marketed in 2017, control links are implemented by spread spectrum 
modulation37 of frequencies in the unlicensed 2.4 GHz band,38 with some vendors selecting the 

                                                
36 The importance dimension is not quantitative, but qualitative and suggestive. 
37 Spread-spectrum modulation is a system for splitting information into tiny slices of content that are 
transmitted separately on each of a hundred or more frequencies in a band of RF spectrum. See K. H. 
Torvmark, Frequency Hopping Systems, TEX. INSTRUMENTS, Application Note AN014, 
http://www.ti.com/lit/an/swra077/swra077.pdf (last visited Mar. 5, 2017) (explaining spread- spectrum 
modulation). See generally Methods, Apparatuses, and Sys. for Asynchronous Spread-Spectrum 
Commc’ns, U.S. Patent No. 7,990,874 (issued Aug. 2, 2011) (reviewing history and characteristics of 
spread spectrum technologies). Wi-Fi uses spread spectrum modulation. Syed Masud Mahmud, Spread 
Spectrum and Wi-Fi Basics, WAYNE ST. U. 
http://ece.eng.wayne.edu/~smahmud/ECECourses/ECE5620/Notes/Wi-Fi-Lecture.pdf (last visited Mar. 5, 
2017) (explaining how Wi-Fi uses spread-spectrum modulation). 
38 Phantom 3 Professional Specs, DJI, http://www.dji.com/product/phantom-3/spec (last visited Mar. 2, 
2017). 
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5.7 GHz band instead.39 Sometimes the control link piggybacks on top of a Wi-Fi connection;40 
in other cases it uses coding and modulation schemes similar to those used by Wi-Fi but 
independent of it.41 The range of control link signals is limited to a half-mile or so.42  

Interference from the other strong sources of RF43 energy, such as high tension power lines or 
broadcast radio and television antennas can disrupt the control link, as can congestion on the 
relevant frequency band from other Wi-Fi users. Heavy cellphone usage would be unlikely to 
interfere because the frequencies are different.44 Dense materials such as structures and hills 
attenuate these frequencies and can result in loss of the control link when they come between the 
DROP45 and the drone. 

GPS operates by means of a receiver and associated processing software that triangulate RF 
signals received from a multiplicity of GPS satellites. The receiver is passive; it is not a 
transmitter, and no handshake is involved with the GPS satellite. All the receiver needs to do is 
to be able to see and hear the requisite number of satellites. The satellites transmit on two 
frequencies: 1575.42 MHz (L1) and 1227.60 MHz (L2).46 Typical drone GPS implementations 
require anywhere from 6 to 12 satellite signals to perform the necessary computations.47 When 
this occurs, a state known as "GPS lock" exists. The frequencies involved suffer significant 
attenuation from physical objects such as foliage, structures, and precipitation, and so it is not 
unusual for the requisite signals to be unavailable or intermittent in particular circumstances. 

a) Synchronization, GPS and Otherwise 

Synchronization must exist between transmitter and receiver for any radio communication to 

                                                
39 Craigi, Basics of Radio Frequencies for FPV Quadcopter Drones, DRONEFLYERS (Nov. 17, 2014), 
http://www.droneflyers.com/2014/11/basics-radio-frequencies-fpv-quadcopter-drones/ (reviewing 
frequencies used by popular drones). 
40 The Complete Drone Data Platform, 3DR, http://3drobotics.com (last visited Mar. 2, 2017). 
41 A drone vendor could design and deploy its own control link hardware that would use some or all of the 
802.11 standard without relying on off-the-shelf WiFi products. 
42 Phantom 3 Professional Specs, supra note 38; DJI MAVIC SPECS, https://www.dji.com/mavic/info 
(claiming control link range or 4.3 miles, and video transmission range of 80 meters horizontally and 50 
meters vertically). 
43 Radio frequency. 
44 U.S. cellphones operate on the 800 MHz and 1.9 GHz frequency bands; WiFi operates in the 2.4 and 
5.8 GHz bands. Cellular Frequencies and Bands in use Today, CRITERION CELLULAR, 
http://www.criterioncellular.com/tutorials/bandsandfrequencies.html (last visited Mar. 2, 2017) 
(summarizing cellphone frequencies); wifi radio frequency channels, RF WIRELESS WORLD, 
http://www.rfwireless-world.com/Terminology/wifi-radio-frequency-channels.html. 
45 DRoneOPerator. 
46 GPS signals, WIKIPEDIA (Jan. 31, 2017, 4:45 AM), https://en.wikipedia.org/wiki/GPS_signals. 
47 Tom Clark, How a GPS Receiver Gets a Lock, 
GPSINFORMATION.NET, http://gpsinformation.net/main/gpslock.htm (last visited Mar. 2, 2017) 
(explanation by amateur radio operator of how a device gets a GPS lock). The author holds a remote pilot 
certificate from the FAA and his small business owns registered drones. In his extensive experience flying 
these drones, none of them get a GPS lock until they have acquired signals from 6 to 12 
satellites.web2.westlaw.com 
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occur.48  

Loss of synchronization of GPS systems is quite common in drones, but less so in manned 
aircraft and highway applications. The GPS receiver requires signals from a certain number of 
satellites, typically 6 to 12, in order to compute its position. When the requisite number of 
signals become unavailable, it loses the capability to perform its function. If GPS link and 
position is reestablished sometime later, there will be a gap in the drone’s memory about where it 
has been. This may or may not create a risk, depending on when the GPS link is lost and how 
soon it is reestablished.  
Redundancy is the most common way to mitigate lost synchronization. When multiple channels 
exist, the likelihood that synchronization will be lost on all of them at the same time is low. 
Different frequencies, different modulation schemes, and different methods increase the power 
of redundancy. For example, relying on data about position and attitude from an IMU unit does 
not require radio communication at all, and thus overlaying a GPS-based navigation and control 
with an IMU system increases reliability of control and navigation considerably. This is not 
typically done in low-cost vehicles because low-cost accelerometers, the heart of an IMU, drift 
rapidly. 

                                                
48 The simplest form of synchronization is for the transmitter and receiver to be tuned to the same 
frequency and for the receiver to be listening when the transmitter is transmitting. Radio nets are long-
standing ways of achieving this kind of communication. A group of stations wishing to exchange traffic 
for a particular purpose agree to meet on a particular frequency at a particular time. Both frequency and 
time synchronization are involved. 
More sophisticated automated multiplexing schemes place much greater demands on synchronization. In 
spread-spectrum-frequently-hopping systems, for example, the receiver must coordinate the frequency it 
is listening on with the frequency the transmitter transmitting on at each microsecond. If it gets behind or 
ahead, it will not receive any relevant information from the transmitter.  
Even at the most rudimentary level of digital communications, synchronization is necessary. The 
transmitter and receiver must know which bit occupies each position in an eight-bit byte. Typically, low-
level synchronization is achieved in transmitter and receivers close to each other (as by being inside a 
single computer) by using closely coordinated or common clock signals. The more widely separated the 
sending and receiving stations, the more difficult it is to do clock-based synchronization. 
Some synchronization algorithms depend on a synchronization header—a particular pattern of bits or a 
particular type of signal that signifies the beginning of a packet or transmission. The receiver must be able 
to identify the header as such and know what to do next. Some synchronization schemes are implemented 
for packet communications; others are oriented toward bit streams comprising communications session 
events, such as one station’s transmission.  
Fading or interference can cause the receiver to miss critical synchronization information, in which case it 
loses synchronization and must have some strategy for reestablishing it. In the most primitive 
implementations, they only solution is to terminate the communications session altogether and attempt to 
reestablishing it. More sophisticated systems maintain the link, while the receiver looks for another 
synchronization point such as a "begin packet" header. During any period of lost synchronization, the 
communications channel is not transmitting any information. This may have serious consequences. If an 
operator transmits a control command during a period of lost synchronization, the vehicle doesn't know 
about it.  
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b) Interference, Including Multi-Path 

The millions of radio signals present everywhere would produce a cacophony of interference 
unless some method exists for separating them. The most basic method separates them in the first 
instance by frequency, a technique made easier because antennas strongly receive only those 
signals on or near their resonant frequencies. Antenna resonance occurs when the length of the 
antenna is the same of a small fraction of the wavelength of the signal. Then, receiver “tuning” 
circuits separate the subset of signals received by the antenna. When two signals exist on exactly 
the same frequency, at exactly the same time, and they are exactly equal in strength, no receiver 
can pick out the information from one and ignore the information from the other.  

Preventing this kind of common-channel interference requires assigning different frequencies to 
transmitters located near each other. The task is made easier by regulatory control over 
transmitter power and geographic location of transmitter antennas. This is always done by the 
FCC, which increasingly relies on private sector frequency coordinators for different services 
and different parts of the country.49 A single designer of a system of multiple transmitters and 
antennas can present a total package to the frequency coordinator, such as in the railroad 
industry. 
Spread spectrum frequency hopping is a form of rapid fire frequency division multiplexing in 
which a signal is sliced up into very small components and distributed across 100 or more 
frequencies. Multiple stations using the same block of frequencies can transmit at the same time 
because the statistical likelihood of a collision between any one transmission and any other is 
low, and because the amount of data lost when a collision does occur is so small that common 
error-correction protocols can reconstruct the lost data. Spread spectrum modulation is required 
for Wi-Fi communication in 2.4 GHz band. 

Interference on common frequencies can be prevented by time division multiplexing, a human 
protocol or technology-enforced scheme in which only one transmitter transmits at a time. This 
occurs in hundred-year old simplex voice communications such as that employed in air traffic 
control, and railroad train dispatching. Stations communicating with each other signify that is the 
other station’s turn to transmit by saying “over” or implying it by the content of the transmission. 
Newer, computerized, and much faster forms of time division multiplexing are commonplace in 
cellular telephone and virtually all transportation data systems. Packet-based data 
communications used over the Internet are an example of time division multiplexing over a 
single channel. 
Another form of interference occurs when the same station’s signals following multiple paths to 
the receiver interfere with each other. This is known as multipath interference which is common 
on VHF and higher frequencies, whose signals bounce off buildings and terrain features like 
mountains. A receiver might receive the signal from one path and simultaneously receive the 
signal from another path so that the signals are exactly out of phase and therefore completely 
cancel each other. This obviously is a problem. The possible paths change when the transmitter 
or receiver or both are mobile. The movement alters the possible paths for the signal as they 
                                                
49 See, Frequency Coordinators, FED. COMM. COMMISSION, 
http://wireless.fcc.gov/services/index.htm?job=licensing_3&id=industrial_business (last updated June 1, 
2016) (listing of frequency coordinators). 
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move around. One common solution to reduce but not to eliminate this problem is to have a 
redundant system of multiple antennas spaced a few inches or a few feet apart on both 
transmitter and receiver to reduce the chance of multipath interference occurring on every pair of 
antennas.50  
Interference can also be reduced by space division multiplexing, causing signals travel only in 
one direction from the transmitter, thus being available only to receiving antennas located in that 
direction. This means of interference reduction is available to all radio designers who can use 
directional antennas at both ends. It is commonplace in cell phone site design. 
It does not, however, work very well for aviation, motor vehicle, and maritime applications. The 
vehicle with which communications is desired may be at any azimuth from the transmitting site. 
It does however work for railroad communication, where a train or a maintenance way vehicle 
almost certainly will be on or alongside the track. Antennas for wayside stations and for many 
base stations involve communications with activities occurring on one or a few lines of railroad, 
and the antennas may be directed along the tracks.  

c) Fading 

Fading is a rapid shift in signal strength. Depending on the reason for the fade, a signal that is 
quite readable may become so weak that it is unreadable in a matter of a few seconds. Fade is 
common in HF communications, where minute by minute fluctuations in the height and 
characteristics of different layers of the ionosphere occur51 and somewhat less frequent at higher 
frequencies in the UHF or microwave range, 52where the term “rain fade” evokes its cause. 
Changes in receiver antenna orientation can cause signals to fade, as can multi-path interference. 

2. Blocks 
All of the systems use blocks. Conceptually, a block is a defined space reserved exclusively for 
an occupant. A block system avoids collisions by ensuring that no vehicle enters another 
vehicle’s block. Block systems for traffic control originated in the rail industry, but aviation uses 
them as well. Railroad blocks are defined as segments of mainline track between particular 
mileposts or traffic control facilities. Air traffic control blocks are defined as particular altitudes 
and headings between waypoints for IFR traffic. Base leg, final approach, and the runway itself 
define blocks utilized by ATC for visual approaches at controlled airfields. Smaller blocks allow 
for more traffic, while greater speeds require bigger blocks. 

a) Borrowing Concepts From Communication 

This article focuses on automation of transportation. Some of the strategies for protecting against 
collision imitate strategies long used in radio and wired communication, especially computer-
network communications, to avoid collision. Just as a human pilot can look outside for another 
aircraft or a fixed object that might pose a potential threat, a human radio operator can listen to a 
channel before transmitting to see if anyone else is using it. Listening to the channel before 
transmitting can be done by a machine as well as by a human operator. Sensors and automated 

                                                
50 Separations of a few inches work when the wavelength is no more than a few inches. 
51 The fluctuations occur because of changes in ionization from solar radiation, for example due to solar 
flares. 
52 UHF is usually unaffected by the Ionosphere, because its shorter wavelengths are not refracted there. 
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collision avoidance systems can look outside as well. 

Machines, on the other hand, have to use other strategies to protect against collision; they lack 
the instincts that permit human pilots simply to touch a control and fly around a collision threat. 
They must explicitly calculate collision-avoidance paths. Prevention of radio interference long 
has involved means for separating different signals. The first techniques assigned transmitters to 
particular frequencies and limited their power. This is analogous to separating air traffic by 
assigning different altitudes and flight stage lengths. Frequency assignment allows a receiver to 
discriminate among all the signals it receives; a transmitter and receiver on the same frequency 
constitute a discrete channel, the rough equivalent of a block in the other modes. Limiting the 
power defines the range of a particular transmitter in spatial terms. Separate frequency channels 
within the same range constituted the earliest block protection in radio technology. It does not 
matter whether a machine effects the separation of a human operator effects it. The result is the 
same.  

Now, with highly directional antennas, radio spectrum can be subdivided into point-to-point 
spatial regions, not entirely unlike airways or GPS-defined routes in the international airspace. 

All of these techniques come into play in husbanding radio spectrum for automated 
transportation systems, but some of them are more applicable to collision avoidance by vehicles. 
Particularly relevant is carrier-sense-multiple-access (“CSMA”), the technique used by Ethernet 
for computer networks and by most digital radio modes to avoid collisions between electronic 
signals on the same channel. CSMA requires a device to listen to a channel to see if it is 
occupied before it sends a packet of information. If it is occupied, it waits for a statistically 
determined time interval and then listens again. It also detects interference once it has started 
transmitting and backs off before trying again for a similar interval.53 

b) Neighborhood Access for MicroDrones (NAMID)54 
The NAMID system for managing airspace for drones delivering packages, discussed in section 
III.G, illustrates the utility of the CSMA model and further illustrates block protection in the 
automated transportation realm.55 It uses a combination of external surveillance by radar, 
satellites, and cell towers, and peer-to-peer telemetry exchange to track drone positions. Then, it 
relies on onboard collision avoidance and geofencing to control navigation by consulting Internet 
linked databases of weather and wind, airspace constraints, and three dimensional maps of 
terrain and human-made structures. Human oversight and flight planning are involved, but not 
moment-to-moment vehicle control by remote pilots. 
NAMID utilizes a network of allowable routes from one point to any other point within, say, five 
miles, developed from detailed data about ground features available from Google maps and a 
wide range of mapping competitors. Basic algorithms in the system do not simply draw a straight 
                                                
53 See, Introduction, Carrier Sense Multi-Access/Collision Detection (CSMA/CD), CISCO, 
http://www.cisco.com/en/US/tech/tk389/tk214/tk125/tsd_technology_support_sub-protocol_home.html. 
54 This section is excerpted from DOMESTICATING DRONES, supra note 20, ch. 3. 
55 The NAMID system described in this section is very similar to the system proposed by Amazon in two 
white papers released in August, 2015; although the following subsections provide more detail on the 
architecture and its traffic–separation rules. NASA's UTM project is developing concepts similar to those 
described for NAMID. Unmanned Aircraft System (UAS) Traffic Management (UTM), NAT’L 
AERONAUTICS & SPACE ADMIN., http://utm.arc.nasa.gov/index.shtml. 
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line between origin and destination pairs; they figure out how to use the existing infrastructure of 
streets, sidewalks, and expressways. They update their routing strategies based on minute-to-
minute information about congestion, construction, and street closures, information available 
from databases associated with consumer-level GPS navigation systems. 
Layered on top of this basic infrastructure map are traffic separation rules. A microdrone tasked 
to fly to a particular destination would broadcast its intentions. Other nearby microdrones would 
respond with a data block disclosing their positions, routes of flight, and intentions. These 
autonomous communications exchanges would reference the routes defined in the infrastructure 
map. 

If a particular segment of the route desired by the first microdrone is occupied, it would wait or 
seek another route. A first-come-first-served rule of thumb is built in. For example, a microdrone 
delivering a package to the apartment complex at 930 Evanston Street would request access to 
the segment between the intersection of Bode Road/ Evanston Street and the driveway into the 
complex. If that segment is already occupied by another microdrone, it would hold at the 
intersection until the segment is clear.  

Each microdrone is equipped with a transceiver capable of communicating with NAMID, 
constantly exchanging information about geographic position from onboard GPS, magnetometer, 
altimeter, and accelerometers. When a microdrone plans to enter a NAMID neighborhood, it 
would broadcast an inquiry message, similar to the message broadcast by a wireless-network-
equipped computer wishing to connect to a WiFi network, a cellphone seeking a handoff to a 
new cell tower, or an office computer connecting for the first time to a wired LAN. 

The NAMID protocol would cause any other NAMID station within range to acknowledge 
receipt of the inquiry, and a handshake (establishment of a communications link between the 
two) would result. The new microdrone would then be connected to that NAMID network and 
become a node in that network. 

Thereafter, each NAMID node in a network would broadcast its position and destination in 
packets. All nodes would process these packets and determine which microdrones were on the 
same route. Collision avoidance architecture is peer-to-peer; no ground stations would be 
required for collision avoidance. 

NAMID blocks could be particular segments between two intersections, or pathways to 
individual residences in a housing complex. GPS permits blocks to be arbitrarily defined, but 
they must be known to every vehicle participating in the system. 
The blocks can be fixed, or they can move with the vehicle, as in some advanced forms of 
railroad dispatching and in IFR approach-control operations. 
Capacity depends upon the size of the blocks; larger blocks mean less capacity, while smaller 
ones mean greater capacity. A block would have both a vertical and a horizontal dimension. For 
example, one block in a neighborhood might be the airspace between 50 and 90 feet over Carol 
Lane between its intersection with Green Bay Road and the intersection of Park Place; another 
block might be the airspace between 110 feet and 150 feet over the same segment of road. Grid 
systems in the form of maps already exist for neighborhoods, but NAMID also must have 
altitude separation. 
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Some blocks would be defined on an ad hoc basis, such as those accommodating descents for 
landing at a particular destination (e.g. the front porch of a residence). Entry into an arrival block 
from a predefined en route block would be indicated by the transmission of a message alerting 
the other microdrones in the vicinity to expect pathway coordinates for the landing profile. Once 
they receive it, the landing segment block would be like any other block in terms of the exclusive 
right of the first entrant to occupy it. 
Higher-level blocks would have larger lateral boundaries and be reserved for the en route 
portions of flights, while lower-level blocks would be smaller to accommodate arrivals and 
departures, and to transition from the en route blocks.  

Microdrones flying in NAMID would constantly broadcast their locations, thus allowing other 
drones to know when a block is occupied. They also would listen to other drones broadcasting 
their locations. If another drone is already in a block, a second drone would not enter.  
Once a block is free, a drone could enter it and have exclusive authority to remain in the block, 
potentially limited by time. Time limits for block occupancy might be fixed, or they might 
depend on the size of the block, defined, for example, by a certain direction multiplied by the 
length of the block. The latter approach would give flexibility to blocks of varying sizes, which 
in turn would depend upon the capacity needs for that particular portion of the network. A 
largely rural area with one farmhouse per square mile would have blocks a mile long. Limiting 
access to that block by only one drone at a time would not impose significant cost; the likelihood 
of other drones waiting for access is small. On the other hand, recalling that only one drone can 
occupy a block at one time, the blocks in a residential apartment complex would need to be quite 
small, probably the size of segments of sidewalk extending from the projected sidewall of one 
building to its opposite side wall.  

Traffic separation by limiting vehicle access to blocks of space, long managed by human 
dispatchers or controllers can also be implemented by computerized navigation systems. 

F. Human and Machine Relationships 
Some systems dispense with the human operator altogether and perform both the sensing and the 
response functions autonomously. Others, like most aircraft, rely on a human pilot for most of 
the sensing because of a perception that human senses are better than machine sensing, at least 
for routine navigation. On the other hand, ADS-B Out is purely oriented toward enhancing pilot 
sensing. Increasingly, these systems constrain what the pilot may do. The Airbus envelope 
enforcement protocols are an example of constraining pilot input. The railroad system mainly 
overrides unsafe operator control inputs, although it also enhances sensing. 

Human beings other than pilots and engineers long have played a role in both aviation and 
railroad navigation and traffic separation. An air traffic controller is like a railroad dispatcher. 
Both give vehicles under their authority clearance to enter certain blocks of space. In the distant 
past both depended on positon reports: in the case of aircraft, position reports were 
communicated by radio; in the case of trains, position reports were communicated by telegraph 
or telephone “OS” reports from operators in stations every few miles. Now, air traffic controllers 
mostly depend on computerized radar depictions for aviation, and railroad dispatchers track 
occupancy indications on centralized traffic control boards. 

In many cases, designers believe that human perception is better than robotic perception for 
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certain navigation and collision avoidance tasks. In such cases, the role of automation is to 
enhance the human operator’s perception. For example, ADS-B Out provides visual imagery for 
potential conflicts to onboard pilots. In other cases, regulation requires that the operator maintain 
a watch (as in highway operation), be able to see a certain distance (as in aviation’s Visual Flight 
Rules), or keep the drone within his line of sight (as under Part 107 of the FARs). The optimal 
relationship between human perception and robotic perception is constantly changing as robotic 
perceptive apparatus improves.  

Autonomous robot operations have been introduced to all modes of transportation because 
robotic systems can perform some functions better than human operators. For example, a small, 
electrically powered quadcopter cannot fly at all without substantial autonomy in its attitude and 
electrical control systems; human operators simply cannot change the current for the different 
motors rapidly enough to keep the drone upright and to move it along its three axes. So even the 
most basic thousand-dollar quadcopter has capabilities in its autopilot that would amaze most 
pilots. Similarly, the automobile industry has gradually embraced vehicle autonomy as it has 
come to realize that affordable systems can handle common emergencies, such as skids, better 
than most human drivers. And policymakers have forced the railroad industry to accept PTC in 
light of highly publicized fatal accidents involving human operators who ignored or 
misunderstood signals.  
Autonomy” and “robotics” are terms that can be misleading. A common view is that the term 
“robot” signifies a completely autonomous agent with broad spectrum intelligence. But that is 
inaccurate. Autonomy exists in varying degrees, and a subsystem may be a robot, while the 
larger system of which it is a part is controlled by human operator. According to this more 
sophisticated understanding, even the simplest automatic control system with feedback is a robot, 
capable of operating autonomously within a limited sphere of responsibility.  
Almost any drone on the market uses a combination of autonomy and human direction to fly its 
intended mission. As the regulatory environment begins to permit drones to fly beyond line of 
sight and at night, and collision avoidance systems are improved, the balance between human 
control and autonomy will tip in favor of more autonomy in more major functions. 

G. NAMID 

Section 3.13 of Domesticating Drones56 describes a Neighborhood Access for Microdrones 
(“NAMID”) system. NAMID is a sophisticated airspace management system for logistics drones 
that takes autonomy and robotics beyond the level of semiautonomous, line-of-sight daytime 
flights by thousand-dollar quadcopters common in 2017. It is, however, entirely within the 
capability of existing technology, and resembles what Amazon and Google proposed in general 
terms in early 2016. The barriers to NAMID are more political than technological, with 
uncertainty about who will be responsible for its necessary infrastructure.  
The fact that NAMID draws on collision-avoidance and failsafe concepts in wide use in 
computer networks and in train dispatching enables a broad range of alternative design 
challenges to establish design defects, as analyzed more completely in section XXX.  

                                                
56 DOMESTICATING DRONES, supra note 20, ch. 3 at § 3.13. 
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IV. The Legal Framework for Allocating Liability 

Tort law imposes liability on anyone who breaches a duty to the plaintiff when the breach is the 
legal cause of the plaintiff’s injury. Negligence law traditionally articulates the elements of 
liability as comprising (1) duty,57 (2) breach,58 (3) causation,59 and (4) injury.60 Negligence 
liability results when the plaintiff can prove that the interest invaded is legally protected against 
unintentional invasion, that that the conduct of the defendant was negligent with respect to the 
plaintiff or the class of persons in which she was included.61  

Products liability law, a subspecies of negligence, combines the first two elements into product 
defect.62 

Each of the following sections addresses one element of tort liability. Each section reviews the 
doctrine--comparing common law negligence with newer products liability law--analyzes 
caselaw applying the doctrine to technologies analogous to those found in drones, and explores 
the types of conduct by defendants that can support liability under this particular element. 

A. Duty 
The duty element in tort law is more extensive than in other areas of private law. Tort law 
imposes a duty to avoid foreseeable risks of harm to anyone within the scope of an actor's ability 
to cause effects. Its scope is broader than the scope of duty in contract law, which runs only to 
other parties to the contract and to intentional third-party beneficiaries, and broader than most 
aspects of property law where duties run only to others having a connection to the property. Tort 
duties are not unlimited, however. The Restatement (Third) of Torts explains:  

For example, a number of modern cases involve efforts to impose liability on social 
hosts for serving alcohol to their guests. A jury might plausibly find the social host 
negligent in providing alcohol to a guest who will depart in an automobile. 
Nevertheless, imposing liability is potentially problematic because of its impact on 
a substantial slice of social relations. Courts appropriately address whether such 
liability should be permitted as a matter of duty. Courts may also, for the same 
reasons, determine that modification of the ordinary duty of reasonable care is 
required. Thus, courts generally impose on sellers of products that are not defective 
at the time of sale the limited duty to warn of newly discovered risks, rather than 
the more general duty of reasonable care, which a jury might find includes a duty 
to recall and retrofit the product so as to eliminate the risk. Similarly, some courts 

                                                
57 See infra § IV.A. 
58 See infra § IV.B. 
59 See infra § IV.D. 
60 See infra § IV.C. Negligence law imposes liability for: 

• Failure to exercise reasonable care, 
• Factually causing, 
• Physical harm, 

Within the scope of "proximate causation." Restatement (Third) of Torts - Liability for Causing Physical 
and Emotional Harm § 6 & cmt. b. 
61 RESTATEMENT (SECOND) OF TORTS § 281 (1965). 
62 See infra § IV.B.3. 
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have modified the general duty of reasonable care for those engaging in competitive 
sports to a more limited duty to refrain from recklessly dangerous conduct.63 

The duty element in the products liability context mainly relates to the precept that actors had 
duties running only to those in privity with them, which was abandoned in the famous 
MacPherson v. Buick Motor Co.64 

The center of controversy in any particular case can be shifted between the duty and breach 
elements, depending on how one articulates the duty. If one, for example, asks whether the 
designer of a drone has a duty to provide redundant GPS navigation systems, the center of 
controversy will involve the duty element. If, on the other hand, the same case is litigated under 
an assumption that the designer of a drone has a duty to avoid risks of harm arising from 
malfunction of the drone navigation system, the center of controversy shifts to the breach 
element. For organizational simplicity, this article takes the second approach and deals with most 
of the sources of controversy under the breach element. 

B. Breach 
1. Negligence 

The Restatement (Second) of Torts defines negligence as "conduct which falls below the 
standard established by law for the protection of others against unreasonable risk of harm."65  

The assessment of negligence begins with the defendant’s perception of risk; he is judged 
according to a reasonable man standard, enhanced by his own special knowledge, intelligence, 
and judgment.66 In assessing risk, the defendant is required to take into account matters of 
common knowledge, including general customs.67  

Customs in the community are relevant to the negligence evaluation, but compliance with 
custom is not necessarily exculpatory.68  

Competence is part of the assessment. Acting incompetently is acting without requisite care.69 
Section 307 imposes a duty to inspect an instrumentality and imposes negligence liability for 
operating it even though it is defective. Defendants are required to take into account the 
foreseeable risk that others will act negligently; one does not escape liability for his own conduct 
merely because another is at fault.70 
The common-law balances risk against utility. Section 291 says that risk is unreasonable and an 
act giving rise to it is negligent, "if the risk is of such magnitude has to outweigh what the Law 
regards as the utility of the act of the particular manner in which it is done." Section 296 allows a 
wider range of risky conduct when the defendant is responding to a sudden emergency. 

                                                
63 RESTATEMENT (THIRD) OF TORTS: PHYSICAL & EMOTIONAL HARM § 7 cmt. a (2010). 
64 MacPherson v. Buick Motor Co., 111 N.E. 1050 (N.Y. 1916). 
65 RESTATEMENT (SECOND) OF TORTS § 282. 
66 Id. § 289. 
67 Id. § 290. 
68 Id. § 295A 
69 Id. § 299. 
70 Id. § 302A. 
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Section 292 identifies the factors that influence a determination of utility: social value, the 
tendency of the defendant’s particular course of conduct to advance that value, and the extent of 
the chance that the value can be adequately advanced or victims protected by another and less 
dangerous course of conduct."71  
Failing to use appropriate technology is a breach of duty. The famous 1932 case T. J. Hooper v. 
N. Barge Corp.72 held that a tug boat operator was liable for not equipping his tugboat with radio 
communication equipment so that the master could obtain current weather reports. T.J. Hooper 
arose in the context of changing technologies. Radio technology was just beginning to make its 
way into regular use by boats and ships. In the drone context, the big argument is whether 
“return to home” or any other capability is used by other vendors, so that it has become an 
industry standard.73 Under this precedent, a drone designer would be liable for omitting common 
safety features, such as a return to home function triggered by a lost control link.  

2. Shortcuts 
Tort law provides some shortcuts for establishing negligent behavior. Several of these are 
embedded in products liability concepts. Others are generally available to negligence plaintiffs. 
Some of the shortcuts make it unnecessary for the plaintiff to prove duty and breach with respect 
to a particular kind of harm; others simply make it easier for a plaintiff to prove those two 
elements, as by shifting the burden of proof to the defendant. 

a) Abnormally Dangerous 

Section 519 imposes strict liability on one who carries on "an abnormally dangerous activity," 
with respect to the kinds of injury that make the activity abnormally dangerous.74 The degree of 
care utilized in carrying on the activity is irrelevant, although the plaintiff must show injury and 
causation. Whether an activity is abnormally dangerous depends on the existence of a high 
degree of risk of harm, the likelihood that the harm that results from the activity will be great, the 
inability to reduce the risk with the exercise of reasonable care, the extent to which the activity is 
not a matter of common usage, the inappropriateness of the activity of the place where it is 
carried on, and the extent to which its value to the society is outweighed by its dangerous 
attributes.75 Drone operations are less likely to be characterized as abnormally dangerous as their 

                                                
71 Id. § 292 
72 T.J. Hooper v. N. Barge Corp., 60 F. 2d 737 (2d Cir. 1932) (Hand, J.). Because the tugs’ radio receivers 
were not in working order, the vessel was unseaworthy. Id. at 740. Unseaworthiness is a product defect. It 
made no difference to Learned Hand that no industry custom had been established regarding the use of 
radio receivers. Id. (“Courts must in the end say what is required; there are precautions so imperative that 
even their universal disregard will not excuse their omission.”) 
73 In some cases intellectual property may get in the way of wide adoption. Vendor A might create a new 
component that enhances its drone’s safety and patents the technology. Vendor B is unable to use that IP 
to remain on top of the market’s safety standards. What then? 
74 See also RESTATEMENT (THIRD) OF TORTS: PHYSICAL & EMOTIONAL HARM § 20 (1998). 
75 RESTATEMENT (SECOND) OF TORTS § 520 (1977). Assessing the risk/reward balance encounters 
questions of which part of society is the judge: a local community in which drones are perceived as 
undesirable, or a broader national community. [ED: additional citation OK] 
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use becomes more common.76 Classification always will depend on the appropriateness of where 
the drone is flown,77 and the utility of the particular mission.78 
Section 520A imposes strict liability on the operator of an aircraft that causes damage to person 
or chattels on the ground. It is "a special application of section 519 and 520.”79 
The strict liability imposed by the section cannot be imposed by persons participating in the 
activity, such as the crew or passengers.80 [ED: edit OK] Although the matter is not settled, the 
general trend among courts and commentators has been to view aviation as subject to usual 
negligence principles rather than special treatment as abnormally dangerous under section 
520A.81 

In Crosby v. Cox Aircraft Co.,82 the Supreme Court of Washington reversed the trial court's 
application of section 520A and held that "aviation can no longer be designated an 'abnormally 
dangerous activity' requiring special rules of liability."83 It traced the legal history of aviation and 
remarked on its maturation from a time when Professor Prosser wrote: "Flying was of course 
regarded at first as a questionable and highly dangerous enterprise, the province exclusively of 
venturesome fools..."84 It saw no reason why passengers injured in a crash should have to prove 
negligence, while persons on the ground should benefit from strict liability.85 It held that 
plaintiffs seeking damages for aircraft crashes causing ground damage must show ordinary 
negligence.86 It noted, however, that they might benefit from doctrines such as res ipsa 
loquitur.87 

b) Negligence Per Se 
Proving negligence requires proving breach of a duty to the plaintiff, in that the defendant did 
not conform his conduct to the applicable standard of care. Negligence per se enables a plaintiff 
to prove duty and breach by showing that the defendant violated a legislative or regulatory 

                                                
76 Id. § 520(c). 
77 See Id. § 520(d). 
78 See Id. § 520(f). 
79 Id. § 520A cmt. a. 
80 Id. § 520A cmt. e. 
81 See Michael C. Mineiro, Assessing the Risks: Tort Liability and Risk Management in the Event of a 
Commercial Human Space Flight Vehicle Accident, 74 J. AIR L. & COM. 371, 384-385 (2009); Geoffrey 
Christopher Rapp, Unmanned Aerial Exposure: Civil Liability Concerns Arising From Domestic Law 
Enforcement Employment of Unmanned Aerial Systems, 85 N.D. L. REV. 623, 636-638 (2009) (discussing 
theories of liability that might be applied in drone crash litigation). 
82 Crosby v. Cox Aircraft Co., 746 P.2d 1198 (Wash. 1987). 
83 Id. at 1199. 
84 Id.at 1200 (quoting W. Page Keeton et. al., Prosser & Keeton on Torts § 78, at 556 (5th ed. 1984). 
85 Id. at 1202. 
86 Id. 
87 Id. See infra § IV.B.2.c). See generally Theresa L. Kruk, Annotation, Res Ipsa Loquitur in Aviation 
Accidents, 25 A.L.R.4th 1237 (1983). 
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standard.88 Even when negligence per se is not applicable, showing a governmental rule 
violation can shift the burden of argumentation to the defendant.  
Section 874A of the Restatement Second of Torts states the negligence per se doctrine. It makes 
it clear that the "legislative provisions" that may give rise to common-law tort liability include 
regulations of administrative agencies at various levels of government. The starting point under 
the doctrine is that the plaintiff must be a member of the class of persons protected by the 
regulation.89  

Section 288B says that when the court adopts a legislative or regulatory standard as the standard 
of conduct, "[t]he unexcused violation of [the standard establishes] negligence in itself." And 
when it is not adopted as the as the standard, it is relevant evidence bearing on the issue of 
negligent conduct.90  

In the aviation context, federal aviation regulations provide a starting point for the appropriate 
standard of care. Part 107 establishes many standards for safety for preflight planning, altitude 
and distance limits, and aeronautical decision making. Although the FAA has avoided imposing 
traditional airworthiness and type certification standards on drones and their components, the 
specifications it imposes with respect to other aircraft are relevant to the standard of care. For 
example, a drone vendor can be challenged to justify providing an autopilot that did not meet the 
requirements of the FAA standard for helicopter autopilots. 
Using federal standards as a reference point opens up the possibility of federal question 
jurisdiction in federal court, which may result in removal.91   
Federal preemption also is a possibility. Preemption is distinct from federal question jurisdiction. 
The weight of the caselaw says that the FARs do not preempt state tort law in personal injury 
litigation, but some of the caselaw suggests that state courts are not free to substitute their own 
standards for those adopted by the FAA. If the plaintiff is happy with the FAA standard and 
being able to show that the defendant violated it, then this is not a problem. But if the plaintiff 
plans to argue for a more stringent standard or for a common-law standard where the FAA has 
been silent, then preemption is a possible barrier.92 

c) Res Ipsa Loquitur 
Res ipsa loquitur is a powerful tool for plaintiffs.93 The phrase is Latin for "the thing speaks for 
itself," and the doctrine permits a plaintiff to recover for negligence without proving exactly how 
a defendant breached his duty of care. It also is a useful way to break the conundrum of an 

                                                
88 See generally RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 14 (1998). 
89 RESTATEMENT (SECOND) OF TORTS § 874A (1965). 
90 Id. § 288B(1). 
91 Gary C. Robb, Helicopter Crash Litigation at 77-78 (2010). 
92 See Henry H. Perritt, Jr. & Albert J. Plawinski, One Centimeter Over My Back Yard: Where Does 
Federal Preemption of State Drone Regulation Start?, 17 N.C.  J. L. & TECH. 307, 338-341 (2015) 
(summarizing caselaw on federal preemption in aircraft accident tort cases). 
93 See generally RESTATEMENT (THIRD) OF TORTS: PHYSICAL & EMOTIONAL HARM § 17 (1998). Res ipsa 
is a powerful tool for plaintiffs, because it relieves them of the need to prove the elements of negligence 
or to prove product defect. 
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indeterminate defendant.94 Its logic is: the aircraft would not have crashed unless someone was 
negligent. It was disfavored in the early days of aviation, because of the belief that aircraft 
regularly crashed whether someone was negligent or not, but its potential availability has 
increased as flying has become commonplace and generally safe. Still, the cases in which it was 
found inapplicable far outweigh the number of cases in which it was accepted. The insuperable 
obstacles for most plaintiffs is that res ipsa loquitur requires three conditions:  

‘(1) the accident must be of a kind which ordinarily does not occur in the absence of 
someone's negligence; (2) it must be caused by an agency or instrumentality within the 
exclusive control of the defendant; (3) it must not have been due to any voluntary action 
or contribution on the part of the plaintiff.’95 

The second condition is the most daunting: aircraft pass through successive hands, each of which 
has control for a period. The designer exercises control during the design phase, the 
manufacturer has control during the manufacturing, fabrication, and assembly phases, and 
typically a retailer has exclusive control before the aircraft is sold. The owner has exclusive 
control after it is sold, the pilot has exclusive control while he is flying it, and the mechanic has 
exclusive control while maintenance is being performed.  
Because of the interrelationship of design, manufacture, instruction, warnings in the flight 
manual, maintenance, and actual flight, it is rare that any one party has exclusive control over 
flight safety. It is always possible that the aircraft design was the best it could be, that pilots were 
warned appropriately of any risky operating quirks, and the pilot simply mishandled the aircraft, 
causing it to crash. But it is also possible that the pilot flew the aircraft perfectly and could not 
have done anything to avoid the accident if a design flaw or maintenance slip up caused a 
mechanical failure or a failure in the electronic systems.  

Major vehicle accidents, especially airplane or helicopter crashes, usually kill the pilot and 
destroy much of the tangible evidence of what went wrong. When accident investigation 
encounters such limits, legal doctrine must provide a starting point for providing causation. Res 
ipsa loquitur is one such doctrine. Three cases illustrate application of res ipsa loquitur in 
aviation cases. In one, Stoddard v. Ling-Temco-Vought, Inc.,96 the aircraft vanished while it was 
over the Pacific Ocean.  

Under normal operations and circumstances an airplane crash into the ocean does 
not ordinarily occur unless someone has been negligent. The happening of the 
accident and corresponding injury was such as in the ordinary course of things 
would not occur if the one having control had used proper care.97  

A drone is unlikely to disappear after it causes an accident, so the unavailability of evidence 
associated with unavailability of the vehicle is unlikely in the drone context. Nevertheless, 

                                                
94 See infra § IV.D.4; see also Ken Oliphant, Causation in Cases of Evidential Uncertainty: Juridical 
Techniques and Fundamental Issues, 91 CHI-KENT L. REV. 587, 593 (2016) 
95 Newing v. Cheatham, 540 P.2d 33, 39 (Cal. 1975) (citing Ybarra v. Apangard, 154 P.2d 687, 689 (Cal. 
1944)). 
96 Stoddard v. Ling-Temco-Vought, Inc., 513 F. Supp. 314, 332 (C.D. Cal. 1980). 
97 Id. at 321. 
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analysis of res ipsa caselaw is helpful in the drone context, because it illustrates the role that 
presumptions can plan when causation is opaque. 
In another, Newing v. Cheatham,98 the court, having restated the doctrine, found the first 
condition satisfied: 

As we previously noted, the first condition for invocation of the res ipsa doctrine is 
satisfied if under the facts of the case, common experience indicates that the 
accident would not have occurred unless there had been negligence on the part of 
someone. In the instant case, it seems reasonably clear in light of the circumstances 
surrounding the crash that the accident ordinarily would not have taken place in the 
absence of negligence. The evidence is uncontradicted [sic] that the airplane took 
off from Chula Vista in clear weather with no restrictions on visibility. There is no 
evidence that weather conditions contributed in any way to the crash of the plane. 
Nor was there any evidence that the plane had collided with other aircraft while in 
flight. Indeed the condition of the plane after the crash was such as to eliminate an 
air collision. It thus fell to the ground, apparently unaffected by external factors, 
only a few miles from the airport whence it had departed some hours earlier. Under 
the circumstances of the present case, it seems reasonably clear that the accident 
probably would not have occurred without negligence by someone. The evidence 
bearing on these circumstances is not only uncontradicted [sic] but of such a nature 
that no issue of fact is raised as to the existence of the first condition for the 
application of the doctrine of res ipsa loquitur. We conclude that the first condition 
is established as a matter of law.99 

It had no difficulty finding the second condition of exclusive control satisfied, because the 
defendant was the only pilot aboard the aircraft.100 
Nelson v. American Airlines, Inc.,101 involved a res ipsa loquitur claim involving a 
malfunctioning autopilot. The appellate court described what happened.  

According to the evidence received in a nonjury trial, . . . the autopilot 
overcompensated pitch trim, causing the aircraft to nose down rather than stay 
level. The copilot immediately disengaged the autopilot, and the pilot resumed 
manual control. In the cockpit the pitch change seemed slight; however the 
stewardess reported that some passengers were injured due to the more severe 
movement in the rear of the plane.102  

The altitude hold feature of the autopilot had caused trouble before, causing replacement of one 
of its components.103 After the accident, the autopilot was tested, and severe porposing occurred 
about 30 seconds after the altitude hold was engaged. The cause of the problem was not in 
evidence. 

                                                
98 Newing, 540 P.2d 33 (affirming summary judgment for plaintiff). 
99 Id. at 40-41. (footnote and internal citations omitted). 
100 Id. at 41. 
101 Nelson v. American Airlines, Inc., 263 Cal. App. 2d 742 (1968). 
102 Id. at 744. 
103 Id. 
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The trial court granted judgment to the defendant, not because it refused to apply res ipsa 
loquitur, but because it held that the doctrine only permitted an inference of negligence, which 
was rebutted by defendant's evidence that it exercised due care. The appellate court disagreed 
with the assessment of the evidence. The evidence showed that a malfunction in the autopilot 
probably caused the sudden change in pitch and that the flight engineer performed a careful 
preflight-check. There was no evidence, however, of similar care by maintenance personnel: 

[T]here was no evidence which the trial court could reasonably have taken as 
excluding such possibilities as the following: negligent errors were made in 
installing the replacement computer; an improperly serviced component had been 
installed; or earlier routine maintenance had been incomplete or otherwise 
improper. . . . [H]ere there is simply no evidence that negligence in maintenance of 
the equipment did not cause some malfunction of a kind such as the flight engineer 
admitted might possibly escape his pre-flight test. The judgment must therefore be 
reversed.104 

In Meil v. Piper Aircraft Corp., the court of appeals affirmed judgment in favor of the plaintiff 
crop duster.105 The court held that the evidence supporting a negligence theory relating to 
survivability justified a res ipsa instruction to the jury: 

Plaintiff's remaining claims go to the crashworthiness of the plane. To recover on 
this ground plaintiff must show that the claimed defect enhanced the injuries 
received from the original crash. Defendant asserts that as to the crashworthy claims 
plaintiff did not prove alternative safer designs or enhanced injuries. 

The first claim is based on an alleged defective seat belt. Plaintiff was wearing the 
seat belt when the plane crashed. When the plane overturned he was suspended 
upside down. Plaintiff testified that he tried unsuccessfully to undo the seat belt 
buckle. The rescuer said that he was familiar with seat belt buckles, including the 
type used on the crashed plane, that he was unable to release the buckle, and finally 
had to cut the strap with a knife. 

An aeronautical expert testified that another type of buckle provided more leverage. 
This evidence plus that of the rescuer sufficed to justify a reasonable inference that 
the seat belt was defective. The record shows that plaintiff suffered extensive burns 
while he was trapped by the inoperative seat belt. The enhanced injuries which he 
received do not have to be quantified. The medical evidence of the extent of the 
burns was enough. 

The next claim relates to the fiberglass hopper which contained the insecticide. An 
aeronautical expert for plaintiff testified that available neopreme [sic] and stainless 
steel tanks would remain intact after the crash. Plaintiff was covered with the 
released chemical, the toxic nature of which is not contested. Rescuers of plaintiff 
suffered nausea and breathing problems. The doctor who examined plaintiff when 
he was brought to the hospital testified to the respiratory problems of plaintiff. The 

                                                
104 Id. at 747. 
105 Meil v. Piper Aircraft Corp., 658 F.2d 787, 788 (10th Cir. 1981). 
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evidence shows an alternative safer design and enhanced injuries and supports the 
denial of the motion for a directed verdict and the verdict of the jury. 
The next claim relates to the fuel header tank which was positioned below the feet 
of the pilot when he was seated in the cockpit. This tank received gasoline from the 
wing tanks and fed it to the engine. Evidence showed that the fire began in the 
engine and spread along the fuel line to the header tank. A plaintiff's witness, who 
was an expert aeronautical engineer, testified that the design was faulty and that 
another design would have prevented the engine fire from spreading. Enhancement 
of injuries by severe burns was established. The evidence was sufficient to sustain 
the actions of both the court and the jury. 
The first two arrivals at the accident scene were unable to extinguish the engine 
fire. The plane's fire extinguisher was held in place by two brackets, one of which 
broke in the crash, and the extinguisher was thrown loose from the plane. The 
bracket which broke was of much softer metal than the one which remained intact. 
The rescuers could not make the extinguisher work and the flames spread. An 
expert testified that the fire would not have spread if the bracket had not broken and 
rendered the extinguisher inoperative. The record sustains a finding of both faulty 
design and enhanced injury.106 

The court approved a res ipsa loquitur instruction.107 

As in Nelson and Meil, the subsystems of a drone involved in an accident are likely to survive 
the accident and be available for testing. In addition, a drone is more likely than a manned 
aircraft or a conventional water vessel to have sent data on the functioning of its systems before 
it is involved in an accident.108 

The res ipsa loquitur doctrine has been restated in section 3 of the Third Restatement of Torts: 
Products Liability as “Circumstantial Evidence Supporting Inference of Product Defect.”109 The 
commentary points out that the plaintiff need not identify manufacturing or design defect as the 
cause and need not point to any specific defect, giving the following as an example: “[In] an 
aircraft . . . in new condition and while flying within its intended performance parameters, the 
wings suddenly and unexpectedly fall off, causing harm.”110 

3. Defective Product 
The introduction to the Restatement (Third) of Torts: Products Liability explains that products 
liability is a species of tort liability that originated with section 402A of the second Restatement, 
which relaxed the long-standing negligence requirement for privity between actor and victim for 
defective products: "The major thrust of § 402A was to eliminate privity so that a user or 

                                                
106 Id. at 789-90 (some internal citations omitted). 
107 Id. at 791. 
108 See infra § VII.A (discussing automatic downloading of data). 
109 RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 3 (1997); see Wright, Statistical Probability at 1336-
42 (explaining that res ipsa loquitur permits liability to be imposed based on statistical probability without 
case-specific circumstantial evidence; urging a narrowing reinterpretation). 
110 RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 3 cmt. b (1998). 
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consumer, without having to establish negligence, could bring an action against a manufacturer, 
as well as against any other member of a distributive chain that had sold a product containing a 
manufacturing defect."111 

"Without proving negligence," signifies that products liability doctrines impose a species of strict 
liability, relieving the plaintiff of proving the standard of care and that it was breached. The 
plaintiff still must prove the other elements of injury and causation, and she must prove the 
conditions, such as "defective product" or "abnormally dangerous," that qualify the case for strict 
liability treatment. 
Section 402A imposes strict liability on the vendor of a product that is defective even though the 
vendor has used all reasonable care in designing, manufacturing, and delivering it. A product 
may be defective because it contains a manufacturing defect, a design defect, or because of a 
failure to include appropriate instructions or warnings in conjunction with its distribution.112 
A design defect exists when "when the foreseeable risks of harm posed by the product could 
have been reduced or avoided by the adoption of a reasonable alternative design by the seller or 
other distributor, or a predecessor in the commercial chain of distribution, and the omission of 
the alternative design renders the product not reasonably safe."113 
The supplier of a component of a product is liable when the component is defective, but not 
when a downstream supplier incorporates a non-defective component in a way that makes the 
final product defective.114 

Adequate warnings may prevent the requisite defectiveness and shield the vendor from strict 
liability.115 The commentary to the section recognizes that some products—it cites certain 
drugs—cannot be made safe and that their delivery into commerce might be justified despite the 
high degree of risk they involve. Such products do not give rise to strict liability.116 

The third Restatement of Torts has simplified the analytical framework. It brings all of the 
products liability doctrines together under the category of defective product,117 recognizing that 
defects may exist in manufacture, design, or product warnings and information. It allows basic 
negligence principles to continue to operate in the background. The Restatement’s analytical 
commentary finds a home for virtually all the decided cases in its simplified framework. The 
Restatement’s authors recognized that the third Restatement effort should not only cover the law 
that emerges from cases decided since the second Restatement was published, but also provide 
an analytical framework within which lawyers can understand the cases and related statutes.  

                                                
111 Id. at Introduction. 
112 Id. § 2. 
113 Id. § 2(b). 
114 Id. § 5 (stating exception when supplier of component participates in the integration making the final 
product defective). 
115 RESTATEMENT (SECOND) OF TORTS § 402A cmt. j (1979). 
116 Id. at cmt. k. 
117 RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 1 (1998) (imposing liability for sale or distribution 
of defective products). 
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The framework allows for liability to be established under three categories of defect: 
manufacturing defects, design defect, and failure to warn.118 A plaintiff proves manufacturing 
defect by showing that the vendor did not manufacture the product in accordance with its design. 
Upon such a showing, the Restatement imposes liability “even though all possible care was 
exercised in the preparation and marketing of the product.”119 So, for example, if the design 
called for an IMU having a particular model number, and the manufacture substituted a different 
product number, that is a manufacturing defect. The plaintiff still must prove that the substitution 
was factual and legal cause of the injury.  
A plaintiff may prove design defect by demonstrating a safer alternative design.120 That design 
must have been known at the time of the sale of the product, and it must have been feasible. 
Feasibility includes consideration of cost and the market the product seeks to serve. Proving that 
an accurate and stable IMU is a safer alternative to GPS navigation does not satisfy the plaintiff’s 
burden if an IMU with the requisite drift levels would cost $10,000, compared to the five-dollar 
cost of the installed IMU. Similarly, any alternative design proffered does not satisfy the burden 
if it is suitable only for a much larger or more expensive drone rather than one in the price range 
of a DJI Inspire. 
The third category covers products that are defective because of a failure to warn.121 The design 
defect and failure-to-warn categories, unlike manufacturing defect, do not impose strict liability 
but still require proof of fault under a negligence standard. Both contain the phrase: “is defective 
. . . when the foreseeable risks of harm posed by the product could have been reduced . . . and the 
omission . . . renders the product not reasonably safe.”122 

4. Reasonable Alternative Design 
Design defects, which along with failure-to-warn are more likely than manufacturing defects to 
arise in connection with drone accidents, require proof of a safer alternative design. Few reported 
cases exist applying this standard in the aviation context because of federal preemption of state 
law when state law would overlap with federal aviation standards. Because federal aircraft 
design standards are so detailed, little room is left for state judges or juries to evaluate claims that 
an alternative design would have been safer.123 In the drone context, however, the FAA has not 
imposed any design standards, wishing to avoid the burdens and delays associated with 
airworthiness and type certification of this type of aircraft.124 Because the FAA has not acted in 

                                                
118 Id. § 2 (enumerating categories of defect). 
119 Id. § 2(a); see also id. § 1 cmt. a (explaining that a product that fails to meet a manufacturer’s design 
specifications is, almost by definition, defective). 
120 Id. § 2(b). 
121 Id. § 2(c). 
122 Id. § 2(b) & (c); see also id. § 1 cmt. a (explaining that sections 2(b) and 2(c) rely on negligence test; 
arguing that the term “strict liability” in the design-defect and failure-to-warn contexts is misleading). 
123 But see Martin v. Midwest Express Holdings, 555 F.3d 806, 812 (9th Cir. 2009) (state tort claim over 
defective aircraft stairs not preempted, because FAA did not regulate the design of the stairs). 
124 Operation and Certification of Small Unmanned Aircraft Systems, 81 Fed. Reg. 42064, 42181-42183 
(June 28, 2016) (2016) (explaining decision not to require airworthiness or type certification of small 
unmanned aircraft). 
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this area, arguments can be made that state tort law, including evaluation of alternative designs, 
is not preempted.125 
The alternative design inquiry should not be limited to alternative designs for the particular 
mode. In other words, a plaintiff should challenge the design of a drone subsystem not only by 
proving safer alternative designs from the realm of drones, but also by proving safer alternative 
designs borrowed from the railroad or the computer networking industries. These cross-modal 
alternative design challenges will become richer as robotics progresses in all of the modes. 

The NAMID discussion in Domesticating Drones,126 for example, refers several different times 
to conceptual models drawn from elsewhere, particularly air traffic control for IFR flight and the 
railroad industry. If the designer of a drone subsystem proceeds without regard to concepts that 
have proven themselves in long use in those industries, the plaintiff has a much greater chance of 
establishing defective design of the drone subsystem.  
Litigation in South Carolina over the Ford Bronco’s stability provides a clear example of how 
the alternative design evaluation works.127 The plaintiff was injured when his mother ran off the 
road and then over corrected, causing the vehicle to roll.128 The plaintiff claimed that the vehicle 
was defective because of the suspension system that Ford chose: a twin I-beam system.129 The 
plaintiff had evidence that Ford engineers had considered, and indeed preferred, a different 
system using a MacPherson strut which would have resulted in a lower center of gravity and less 
tendency for the tires to lose their grip on the pavement in a skid.130 Despite multiple 
communications from engineers urging that their preferred system would be safer, Ford 
nevertheless a selected the twin I-beam system because of lower cost and because changing to 
the MacPherson strut system would delay market introduction of the Bronco.131 The South 
Carolina Supreme Court held that there was enough evidence of a safer alternative design to go 
to the jury.132 It reversed the jury’s $16 million compensatory damage and $16 million punitive 
damage award on other grounds.133 

The Ford case illustrates the essentiality of aggressive discovery in any products liability case. 
Evidence of engineer discussions about alternative designs is highly likely to exist. The reasons 
particular alternative designs were rejected may bear fruit for a plaintiff. 
In Meil v. Piper Aircraft Corp., the court of appeals affirmed judgment in favor of the plaintiff 
crop duster.134 The court held that the evidence supported strict liability for defective cable cutter 
blades, which failed to sever an electric transmission line the pilot hit: 

                                                
125 Conversely, a defendant can argue that the FAA’s repeated pronouncements that airworthiness and 
type certification of small drones is not good policy should preempt state action with respect to design 
standards. The FAA’s forbearance involves ex ante prescription, however, not ex post liability. 
126 See DOMESTICATING DRONES, supra note 20. 
127 Branham v. Ford Motor Co., 701 S.E.2d 5 (S.C. 2010). 
128 Id. at 8 (summarizing facts). 
129 Id. at 10-11 (describing design choices). 
130 Id. (summarizing engineering preference for MacPherson strut). 
131 Id. at 11-12 (explaining why Ford chose the twin I-beam system). 
132 Id. at 12-13. 
133 Id. at 17 (summarizing reasons for reversal). 
134 Meil v. Piper Aircraft Corp., 658 F.2d 787 (10th Cir. 1981). 
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An expert metallurgist testified for the plaintiff that cutter blades should have a 
hardness of 55-65 on the Rockwell scale of C and the blades on the crashed Piper 
had a hardness of only 20 on that scale. He said that the metal used by Piper was 
unacceptable as a cutter blade and could not cut the cable which had a hardness of 
43 on the C scale. Upon contact the cutter blade would act as an impacting rather 
than cutting device. This testimony was consistent with that of other witnesses who 
said that the cable was broken and not cut. The metallurgist also testified to the 
availability of other harder metals which would have cut through the cable. Pilots 
of crop spraying planes said that they had struck and severed wires, and continued 
to fly. Although no pilot testified to hitting a cable similar to that present in this 
crash, one pilot said that from his experience, which included contact with wires, 
he would expect a plane outfitted with cutter blades to fly through the cable. 
Through various experts, none of whom were agricultural pilots, Piper introduced 
contrary evidence.135 

The Meil case illustrates the availability of alternative designs at the most basic mechanical 
design level—the selection of materials. Almost any drone that crashes could have been made 
from a different material and such an alternative design might have reduced damage of injury 
resulting from a crash. The use of frangible materials for the drone’s body is particularly 
interesting in this regard; frangible materials absorb energy when they fracture. Likewise, rotor 
blades can be designed from materials that fracture on impact, thus reducing the likelihood of 
serious cuts if they strike a person. 

5. Failures in Hardware and Software 
As the level of automation increases, electronic systems failures become more probable than 
mechanical failures. Section a explores the types of mechanical failures that may occur not 
withstanding higher levels of automation, while section b explores areas of possible software 
failure. 

a) Hardware  

Certain hardware design choices or manufacturing techniques give rise to risks. One source of 
hardware-based risk is insufficient security in the attachment of hardware components to each 
other such that components detach. For example, a rotor blade attachment to the motor spindle 
should be well secured and can cause mechanical failure if not attached properly. Mechanical 
failure is less likely to occur, however, as a result of a separation of a major structural 
components, such as a boom, in-flight. The risk associated with the attachment of landing skids 
is unlikely to matter much if a landing skid detaches in flight. This is so because if it detaches on 
landing or take off or is already detached when landing is attempted, the drone might be 
damaged, but the drone is unlikely to damage anything else because it is so close to the ground.  
Another source of hardware-based risk are the many electrical connections that exist on a small 
drone: the connections between battery and power distribution board, the logic connections 
between the navigation control board and the power control board, the connections between the 
power control board and each motor, the connections between the many integrated circuit chips 
and the printed circuit boards to which they are attached, the interconnection of the printed 

                                                
135 Id. at 789-90. 
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circuit boards with the radio transceiver, the feed lines between the antennas and the transceiver 
and between the antennas and the GPS receiver. All of these connections are subject to vibration 
and repeated low-level shocks as the drone makes hard landings--and probably occasionally 
collides with the tree or a fence. Unless all of these connections are designed and manufactured 
to withstand vibration and shocks, the risk is high that one or more connections may be 
interrupted. Such an interruption, depending on the connection, may have fatal effects on the 
functioning of a critical system by, for example, causing a motor to shut down in flight suddenly 
or completely disrupting the operation of the navigational control system. Designers and 
manufacturers can reduce these risks by paying careful attention to where forces are concentrated 
in all electrical connections and designing to avoid creating stress points at these connections.  
Another source of failure is the interaction of hardware and software. Some hardware decisions 
make it more difficult for software to function correctly. For example, the accelerometers in an 
inertial measurement unit may drift so quickly that the control program cannot keep up with its 
readings. And, electromagnetic radiation from the motors and power management logic may 
interfere with radio control signals and GPS signals. The placement of control-link and GPS 
antennas may be such that parts of the drone blocks the signal when it is oriented in certain ways 
vis-à-vis the GPS satellite or the control console. 

Acoustic, optical, and radio sensor errors are another rich sources of anomalous vehicle behavior. 
No sensor models the physical world perfectly. The simplest light-beam detector in a garage 
door control safety device, quaintly known as a “seeing eye,” can only detect the absence or 
presence of a visible light beam in the grossest way. A camera sensor can only detect a limited 
range of light intensities and a truncated version of the real world color spectrum.. A sonar 
sensor can detect only certain sound frequencies. A radio antenna receives signals differently 
depending on the antenna’s physical length, total surface area, and orientation in space. 
Choosing the right sensor for an application requires consideration of its specified error range. 
Too large an error rate renders the output of the best software logic and coding less accurate and 
potential dangerous. 

Beyond that, hardware features the FAA identifies as “mitigating measures” in its rule for 
requesting waivers of specific drone operating rules represent alternative designs. Example are 
parachutes,136 tethers,137 and airbags,138 all of which can mitigate the risk of drones falling on or 
crashing into people below their intended flight paths. 

                                                
136 Henry H. Perritt, Jr. & Quinn Ford, Making newsgathering drones safe near people 
 (Mar. 2016), http://www.movoaviation.com/images/Making_newsgathering_drones_safe_near_people_-
_white_paper_-_perritt_and_ford.pdf. See Mars Parachutes for Drones, MARSPARACHUTES.COM, 
http://www.marsparachutes.com (last visited Mar. 11, 2017); Skycat Parachute Launchers, 
SKYCAT.PRO, http://www.skycat.pro (last visited Mar. 11, 2017); World Class Parachute 
Manufacturers for Drones, UAV, Rocketry, Research!, FRUITYCHUTES.COM, https://fruitychutes.com 
(last visited Mar. 11, 2017). 
137 FAA, Certificate of Waiver issued to Cable News Network, No. 107W-2016-00001A, at para. 13 
(Nov. 15, 2016), https://www.faa.gov/uas/request_waiver/waivers_granted/media/107W-2016-
00001A_CNN_CoW.pdf (granting waiver of prohibition against operations over people for tethered 
drone). 
138 Perritt & Ford, surpa note 136. 
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b) Software  

Because small drones are so dependent on automation to fly at all, automation software is a 
fertile field for fault. The biggest foreseeable risks involve software functioning. Software that 
performs incorrectly can create catastrophic risks depending on the particular software routine 
that malfunctions. Software can malfunction because of an error in its the logic that it is 
executing, or in other words, because the algorithm is wrong. For example, the program enters an 
endless loop under some parameter values or conditions that were not anticipated by the 
programmer. Or, memory mismanagement results in random values erroneously being assigned 
to key variables.  

Many of the most common and frustrating errors in software design and coding prevent the 
program from running at all or permit it to run but not to perform its intended function, even at a 
rudimentary level. The accident risk associated with these kinds of errors is small because they 
either prevent the drone from flying at all, or they make the software malfunction so obvious 
when an operator attempts to fly the drone that he will not continue the flight.  
Higher levels of risk are associated with more subtle errors, like when the software designer 
programs for only a limited range of values. For example, the program might function correctly 
when the height above the ground does not exceed 400 feet, but malfunction when the vehicle is 
higher. Or, the relationship between the values read by the barometric altimeter and the values 
read by a LIDAR sensor might confuse the program at high-density altitudes, which result in 
lower than normal barometric pressures corresponding to a particular height above the ground 
read by the LIDAR. Synchronization logic for the GPS and control links may be insufficiently 
robust because the relevant software routines do not execute fast enough to accommodate 
changing propagation and signal strength as the drone moves around.  

A plaintiff who claims that a designer has breached his duty of care must begin by identifying 
the risks that the designer should have understood and then identify those things that a prudent 
designer would have done to lessen the risk.139  
A fundamental question as to each risk is whether the designer could have made a different 
fundamental design choice to achieve a similar function, say to rely on cell phone tower 
triangulation instead of GPS signals for basic navigation. Then, with respect to each element of 
the chosen design, the plaintiff takes each risk associated with that design and asks what a 
prudent designer could have done to reduce the risk. One possibility is to quantify the risk 
through careful fault analysis. Such a fault analysis could consist of a statistical analysis of data 
sensor errors in order to estimate the total error associated with a particular combination of 
sensors. One can then compare that total error rate with some benchmark of safety to show that 
the designer did or did not meet his duty of care with respect to that risk.140 Then, depending on 
the risk, testing must be performed to validate the fault analysis. 
The problematic programming errors are not the ones that prevent a program from compiling or 
executing; those will be discovered and fixed before the software is delivered. The errors most 
                                                
139 The risks that matter, of course, are those that can be shown to bear some relationship to the accident. 
The risk that the camera gimbal would stop operating is irrelevant if the crash and injury resulted from 
loss of GPS lock. 
140 Of course, the inference to be drawn from the duty of care analysis depends on the availability of 
feasible alternatives to reduce the overall error rate. 
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likely to produce accidents are logic or execution errors that produce unanticipated result in low 
probability conditions. Within the normal flight envelope and normal values for every parameter 
programming mistakes will be evident in even the most rudimentary testing. It is those errors that 
rarely occur or that occur intermittently and with low frequency that pose the greatest risk. 
The challenge for an accident plaintiff is to show that a system malfunctioned, because 
recreating the malfunction has the same elusiveness that makes it difficult for a designer to 
exclude a particular failure. In the vast majority of cases, plaintiffs must win or lose based on 
evidence that excludes other possible causes of the accident, reinforced by showing particular 
reliability tests the defendant should have, but did not, perform. Delivering a product that has not 
been subject to the requisite standard for design verification and testing is delivering a defective 
product.  

Here is a list of common software programming mistakes:  
1. Undeclared variables 

2. Uninitialized variables 
3. Setting a variable to an uninitialized value 

4. Using a single equal sign to check equality 
5. Undeclared functions 

6. Extra semicolons 
7. Overstepping array boundaries 

8. Misusing the && and || operators141  
These coding mistakes are likely to result in execution errors.  

Two additional coding problems are insidious, because they produce symptoms randomly and 
sometimes not at all. Indeed, the second problem more properly might be classified as a 
"phenomenon" rather than an "error," because it is a product, not of anything in the code, but of 
the code’s interaction with its environment. The first of these problems is a failure to prevent 
memory leaks. A memory leak occurs when the program fails to release memory that has been 
allocated to it but is no longer needed. The longer the program runs, the less memory available 
for actual use. This may cause execution to halt altogether or may cause thrashing, a process in 
which the operating system does not have as much memory as it needs and so it constantly swaps 
small amounts of data between active memory and secondary storage. Drones and DROPCONs 
do not have hard drives, but they do have supplementary storage such as SD cards which may be 
used for temporary secondary storage while the drone is flying. Memory leaks and thrashing can 
thus have a significant effect on the performance of such vehicles.  

The small specialized computers on drones run many different computer programs in parallel. 
One program module listens for commands over the radio control channel, while another polls 
the inertial measurement unit for changes in orientation, while still another processes GPS 
signals to determine position, and still another computes how much electrical current to feed 

                                                
141 Alex Allain, 8 Common Programming Mistakes, CPROGRAMMING.COM, 
http://www.cprogramming.com/tutorial/common.html (last visited Mar. 19, 2017). 
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each of the motors to keep the drone upright and responsive to operator commands. A defect can 
cause any of these programs to stop running while the others continue to execute normally. 
Another anomaly results from some exogenous factors that disturb the sequence in which 
program modules are loaded into memory for execution. Any serious computer program has 
many functions and procedures that are not included in the main program itself. Rather they are 
called by the main program when they are needed. When different processes are running in 
parallel, as is common in drone software, something unpredictable may block or delay the 
loading of a particular subroutine while others continue. An interrupt from a sensor might cause 
this, for example.  

Computer processors get data from sensors in two basic ways. One way is for the processor 
periodically to poll the sensor. When the sensor is polled, it sends its most recent data. Polling 
occurs under the control of the central processor. The other approach is for the sensor to send an 
interrupt to the central processor when it has new data. When it receives an interrupt, the central 
processor stops whatever it is doing long enough to receive and store the data. The timing of an 
interrupt is under the control of the sensor. When the central processor receives an interrupt just 
as it is beginning to load a function or a subroutine, other parts of the program, which depend on 
the subroutine, may proceed without it, causing anomalous results. 

Logic errors are different from execution errors. A logic error produces the wrong result even 
though the computer program executes as intended. An execution error produces the wrong 
result even though the logic is right. A logic error might misrepresent the dynamic behavior of a 
drone by, for example, miscalculating a key variable needed for the craft to fly properly. For 
instance, a DJI Inspire has very different moments of inertia around its three axes, compared 
with a DJI Phantom because its weight is substantially greater and its shape is different. Since an 
automatic control system for any aircraft must model the dynamics of the aircraft using these 
moments of inertia so that it can calculate what movement will result from particular control 
inputs, a program that puts the vehicle model for a Phantom into the autopilot software for an 
Inspire will result in bizarre behavior.  

Gyroscopic procession is another phenomenon of vehicle dynamics that confronts every aircraft 
designer and pilot for every powered aircraft in which the propulsion machinery spins. This is 
true of the gas turbines in fanjet, turboprop and piston engines in propeller driven aircraft and 
helicopters, and the electric motors in multirotor drones. If one tries to tilt the axle of a spinning 
gyroscope in one direction, the gyroscope will react in a direction 90° displaced from the applied 
force. Extending the same principle to a multi rotor drone, every time the drone moves about any 
of its three axes, gyroscopic procession occurs on all of its motors, applying torque. How much 
torque depends on the rpm of that particular motor, which is constantly varied to maintain the 
attitude. The interaction of gyroscopic precession with the forces directing flight must be part of 
the dynamic model of the vehicle. Logic errors easily can involve the wrong representations of 
gyroscopic precession.  
Engineers often make approximations to simplify their analysis. Discontinuous variables are 
modeled as continuous ones; trigonometric functions of small angles are expressed as the angles 
themselves rather than as their sines, cosines, or tangents. Drag at very low speeds is expressed 
as a function of velocity rather than a function of velocity squared. Digital signal processing 
involves approximating analog signals based on choices for quantization and digitization. Lossy 
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compression is often necessary to use available bandwidth, resulting in further approximations to 
data.  
Moreover, aerodynamics is notorious for not being reducible to closed form analytical equations; 
wind tunnel testing has always been a necessary part of the design process, because, while the 
general behavior of an airfoil can be predicted analytically, its actual behavior always varies 
from the predicted value somewhat. The many types of turbulent flow associated with rotary 
wing propulsion are especially difficult to represent analytically. To compensate, aeronautical 
engineers are forced to make numerous approximations in the design of navigation and control 
systems and a gap between expected performance and actual behavior results. Thus, these 
approximations are another source of logical error. Careful scrutiny of design decisions will 
evaluate each of these potential sources of logical error, and predict their effect on overall 
vehicle operation. 
In In re Toyota Motor Corp. Unintended Acceleration Marketing, Sales Practices, and Products 
Liability Litigation,142 the district court denied summary judgment on a design defect claim 
growing out of an accident involving uncommanded acceleration by a Toyota. It also granted and 
denied motions in limine to exclude expert testimony. The district court's extensive opinion is a 
good snapshot of vehicle automation claim litigation, including, but not limited to the offering of 
safer alternative designs. 
The court described what happened: 

[T]he collision at issue here occurred after the driver, Mrs. St. John, was stopped 
and ready to turn right at a stop sign in front of an elementary school. Before her 
death, Mrs. St. John testified in both a discovery and a trial deposition that when 
she removed her foot from the brake pedal, the Camry immediately accelerated 
without her depressing the accelerator pedal. She testified that application of the 
brakes did nothing to stop or slow the Camry, and that she struggled to control the 
Camry as she drove through the school yard, striking a number of obstacles in her 
path, including a brick column that formed part of the entryway to the school 
gymnasium, before ultimately coming to rest.143 

On the admissibility of expert testimony, the court observed that the plaintiff need not identify a 
specific defect. Accordingly, the case law does not “‘require each expert to present the complete 
decision tree leading from defect to collision. ‘Reliable expert testimony need only be relevant, 
and need not establish every element that the plaintiff must prove, in order to be admissible.’”144 
Among other things, the plaintiff claimed that a software bug could cause the throttle to go from 
an idle position to a full-throttle position without the driver commanding it, that memory 
corruption can cause sudden uncommanded acceleration, that the Camry's analog-to-digital 
converter was a single point of failure,145 that fail-safe mode did not engage because the driver 

                                                
142 In re Motor Corp. Unintended Acceleration Mktg., Sales Practices, and Prods. Liab. Litig., 978 F. 
Supp. 2d 1053 (C.D. Cal. 2013). 
143 Id. at 1064. 
144 Id. at 1066-67 (internal citation omitted). 
145 Id. at 1077 (summarizing proffer of expert testimony). 
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did not remove her foot from brake,146 that placement of certain tasks in particular software 
modules increased the likelihood of failure,147 the availability of alternative designs that mediate 
conflicting accelerator and brake pedal commands,148 and that the vendor did not follow industry 
computer programming coding standards.149 
The court summarized the factors to be considered in evaluating a design defect claim involving 
software: 

[T]he usefulness of the product; the gravity and severity of the danger posed by the 
design; the likelihood of that danger; the ability to avoid the danger, i.e., the user's 
knowledge of the product, publicity surrounding the danger, or the efficacy of 
warnings, as well as common knowledge and the expectation of danger; the user's 
ability to avoid danger; the state of the art at the time the product is manufactured; 
the ability to eliminate danger without impairing the usefulness of the product or 
making it too expensive; and the feasibility of spreading the loss in the setting of 
the product's price or by purchasing insurance. . . . 
Alternative safe design factors include: the feasibility of an alternative design; the 
availability of an effective substitute for the product which meets the same need but 
is safer; the financial cost of the improved design; and the adverse effects from the 
alternative.150 

In denying summary judgment on the design defect claim, the court explained the standard of 
proof and how the plaintiff could meet it: 

As to the design defect, Plaintiff has offered a plethora of expert opinion testimony 
regarding the development and structuring of the Camry software that supports the 
claim. Plaintiff offers evidence regarding the complexity of the Camry code and the 
failure to conform with certain coding standards in designing that code. He offers 
evidence that this complexity leads to an increased number of software bugs, and 
the inability to correct those bugs without introducing new ones. He offers evidence 
that these software bugs can cause memory corruption. 

Plaintiff's experts opine that memory corruption can lead to unpredictable results, 
and that it can lead to task death. They have explained how the death of Task X can 
affect the target throttle angle in a manner that is inconsistent with driver input. 
It is true that Plaintiff has failed to produce admissible evidence regarding a specific 
defect that could have opened the Camry's throttle from its idle position, but he has 
raised enough evidence to allow for a reasonable jury to infer its existence. This is 
particularly appropriate in light of the fact that the Camry software does nothing to 
track its own failures. If it did, the lack of any identification of a software failure 
would support Toyota's position; however, absent the ability to trace software 
failure, the lack of evidence of a specific type of failure is merely inconclusive. 

                                                
146 Id. at 1081. 
147 Id. at 1083-84. 
148 Id. at 1084. 
149 Id. at 1085. 
150 Id. at 1095-96 (internal citation omitted). 
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To the extent that the risk-utility analysis implicates “alternative safe design 
factors,” Plaintiff has offered evidence regarding at least two available alternative 
designs. Specifically, Plaintiff has presented evidence of the availability of an 
alternative brake-override system that compares the brake pedal sensor to the 
throttle angle rather than the accelerator pedal sensor. Plaintiff has also presented 
evidence regarding brake designs that would not allow depletion of vacuum 
available for braking assist. Under the present record, a reasonable jury could 
conclude that either or both of these alternative designs were desirable, feasible, 
and not cost-prohibitive. 

Toyota contends that even assuming Plaintiff could prove the existence of a defect 
that could cause throttle angle opening from an idle position without driver input, 
the Camry's software fail-safes would negate its effect. This argument assumes that 
the fail-safes themselves never malfunction, and that all the occurrences necessary 
to trigger the fail-safes occurred in the Camry immediately preceding the collision. 
At least two points allow for the possibility that the fail-safes would not have been 
triggered or may not have functioned correctly. Plaintiff's experts explain how a 
supposed redundancy in the accelerator and brake pedal sensors could be rendered 
ineffective by a single failure because their signals are all processed by the same 
A/D converter. Where a failure occurs in the A/D converter, it is possible that the 
brake echo test—a comparison that triggers the fail-safe to which Toyota points—
could operate on stale data to unpredictable results. Moreover, Plaintiff's expert 
Barr testified that in order for brake pedal application to transition the brake switch 
such that the brake echo test would have the mismatching data to trigger the fail-
safe, Mrs. St. John would have had to release the brake pedal for 208 to 212 ms. 
These points allow for the reasonable inference that the fail-safe did not operate as 
intended in this instance.151 

Although the Toyota case involved automobile control systems, the extension of plaintiff and 
defendant arguments to the somewhat different automatic systems in the drone context is 
obvious. 

c) Testing 
The most likely breach of duty by a software programmer or electronic component designer and 
fabricator is failure to conduct sufficient testing.152 Errors that occur earlier in the development 
of hardware or in basic software design are likely to result in the system or component not 
working at all, necessitating a redesign before it reaches the marketplace. This type of failure is 
obvious and total. Testing, on the other hand, is conceptually infinite in scope. To obtain the 
likelihood of failure for each risk, a prudent designer will only run the minimum number of tests 
to obtain a statistically valid sample. Yet, failure to perform adequate tests can give rise to 

                                                
151 Id. at 1101-03. 
152 The author appreciates brainstorming assistance from James Redondo, Chicago-Kent College of Law, 
Class of 2018. 
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liability because it “tends to show that a manufacturer did not exercise reasonable care in its 
production of the product."153 
Test protocols specify how a system or subsystem should be tested to ensure that it meets its 
design goals. For example, control surfaces such as ailerons154 can be tested under varying wind 
speeds in a wind tunnel by measuring the relationship between degrees of aileron deflection and 
the resulting moment at the wing root. Structural strength can be tested destructively by applying 
steadily increasing loads at the wingtip and measuring the load at which the wing-root 
attachment fractures. And finally, crash resistance, say of a LiPo155 battery container, can be 
tested by subjecting the battery casing to various kinds of puncture loads to determine the 
puncture force at which the battery case is penetrated.  
All of these tests can be conducted fairly quickly, given the right equipment. Other kinds of tests, 
however, require much more data and longer collection times. For instance, testing the fatigue 
tolerance of a structural component requires repeated loading and unloading of the structure until 
failure occurs or a crack can be detected. Testing for system reliability requires the application of 
enough use cycles to derive a statistically valid measure of mean time between failures. Tens of 
thousands of use cycles are often necessary to collect the required data.  
In any test protocol, for example the fracture of a wing root in testing wing strength, failure must 
be defined. Additionally, the event or phenomenon whose relationship of failure is being tested 
must be defined; in this fatigue-tolerance example, loading and unloading the wing.  

Microdrones are exceedingly unlikely to suffer structural failure in ordinary use, in the sense that 
the booms156 would separate or the central bay for the electronics would collapse. Certain 
components, however, may experience physical failure. For example, a rotor blade could come 
off in flight, or a battery attachment could fail in flight, resulting in separation of the battery. 
Testing for these kinds of physical failures requires application of traditional techniques for 
measuring component attachment reliability. Additionally, the tester must determine the kinds of 
flight profiles or phenomena likely to cause the fault to manifest: perhaps sudden changes in 
torque for the rotor blade, or turbulence or other causes of abrupt, extreme acceleration in the 
case of the battery attachment. 
The greatest concern for microdrone safety, however, is not failure of structural components; it is 
the reliability of safety systems. A drone with automatic take-off, automatic landing, automatic 
hover, geo-fencing, and automatic return to home poses little risk. The concern is the behavior of 
                                                
153 Prather v. Abbott Labs., 960 F. Supp. 2d 700, 713 (W.D. Ky. 2013) (noting also that "careful reading 
of the KPLA suggests testing may be indicative of whether the manufacturer satisfied its more general 
duty to exercise reasonable care"). The Third Restatement does not make failure to test an independent 
source of liability, but it does recognize that a failure to test may allow defects that would have suggested 
redesign to go undetected. RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 10 cmt. c (1998). 
154 An aileron is a hinged portion of the trailing edge of a wing that can is deflected up or down when the 
pilot moves the stick or yoke. The deflection increases or reduces the lift produced by the wing, enabling 
the aircraft to bank (i.e. roll about its longitudinal axis), and thus to turn.  
155 “Lithium Polymer” is a type of battery chemistry that produces higher specific energy than other 
chemistries. Specific energy is the amount of energy per unit of mass. 
156 The boom on a quadcopter is the structural component that houses the motors at a distance from the 
body. They are necessary to move the centers of rotation of the rotors far enough apart that the rotor 
blades do not contact each other. 
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the vehicle when one or more of these autonomous safety features fails to operate as intended. 
Return to home is the most basic autonomous safety feature. If it works properly, the DROP can 
trigger the return to home feature when he or she is about to lose control or is otherwise uneasy 
with drone behavior. The vehicle’s onboard safety systems also can trigger the return to home 
feature when the battery reaches a certain level of discharge, when the drone flies outside a 
defined height and distance envelope, or when the control link is lost.  
Understanding the potential for failure starts with understanding how the return to home feature 
works. Almost all microdrone return to home features start with a calculation of GPS 
coordinates, performed at least twice: when the drone is launched, to determine the home 
position, and again when return to home is triggered, to calculate present position. Calculation of 
a vector that connects two sets of coordinates is a straightforward application of trigonometry, 
but the return to home feature must rely on an algorithm to perform the calculation. The control 
subsystem also must be able to fly the path with some means of detecting deviation, probably 
requiring additional GPS-coordinate input from the GPS subsystem. Calculation of GPS 
coordinates depends on the availability of signals from enough GPS satellite signals to achieve 
“GPS lock.”  
Conceptually, the design of a test protocol to ensure reliability of the return to home feature is 
straightforward. The tester performs a large number of flights to different radii from the DROP, 
in different directions and different proximities to obstacles, and triggers the return to home 
feature at least once on each test flight. Each success and failure is recorded, along with all the 
flight parameters and profiles.  

The challenge, and the main driver of cost and duration, is not only that many—probably 
thousands—of flights are necessary to collect the necessary data, but also that multiple potential 
causes of return to home failure exist even as a theoretical matter; never mind real-world 
complications. To function successfully, all of the following steps must occur: (1) the return to 
home feature must know the location of the vehicle when the feature is triggered; (2) the feature 
must know the location of home; (3) the feature must be able to calculate a path from its present 
position to home; (4) the feature must communicate the calculated path to a navigation system 
capable of causing the drone to fly the path; (5) the path must be one that the drone’s thrust, 
climb and descent capabilities permit it to fly; (6) the path must not be interrupted by obstacles; 
(7) the drone’s return speed must be greater than opposing wind; and (8) the remaining battery 
charge must be sufficient to fly the vehicle back to the launching point.  
Failure can occur at each of these steps. Failure of steps (1) and (2) can result from not having 
GPS lock at the points when coordinates are recorded. Failure of step (3) can result from data 
errors in the input coordinates or a hardware fault as the algorithm is being executed. Failure of 
step (4) can result from a poor physical connection, data errors, or misalignment of data-structure 
frames. Failure of step (5) can result from the commanded path requiring altitudes, speeds, or 
turn rates exceeding the drone’s performance capabilities. Failure of step (6) can result if the 
drone has flown around or above a tree, pole, or building on the outbound flight. Failure of step 
(7) can result if the drone flew downwind on its outbound flight, if the wind speed has increased 
during the flight, or if the wind speed is greater at the altitude at which the drone is flying than at 
the launch altitude. Failure of step (8) can result if the software mis-calculates the remaining 
battery charge 
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A comprehensive test protocol must collect failure rate data under each of these conditions, 
many of which must be simulated for the test. Room for argument always exists as to whether a 
simulation adequately models reality. Some testing, such as that for steps (3) and (5), may not 
require actual flight. Programmers can create “test cases” where they input several coordinates 
and inspect the algorithm’s output. Requirements for any kind of compliance testing are 
controversial, even among engineers skilled on the subject matter.157 The same room for 
argument exists with respect to testing drone autonomous safety systems. 

The cost of all this is considerable. Suppose 1,000 flights or other test cycles for each condition 
are necessary to collect the data required for statistical robustness (The actual number may be 
much larger). Suppose a DROP, a reliability engineer, and a data analyst are necessary for each 
series of tests. Suppose further that the replacement cost of the test vehicle is $1,200, and that the 
vehicle loss rate during the tests is 10%. Finally, suppose that the duration of each test flight is 
20 minutes, and that return to home can be triggered every five minutes on each flight. 

Together, those assumptions result in total test-flight time of 8,333 hours.158 Assuming personnel 
compensation of $30,000 annually for the DROP, $50,000 annually for the reliability engineer, 
and $25,000 annually for the data analyst, labor costs for the testing total $125,000.159 
This is just one part of a comprehensive test protocol. Tests also must be designed to determine 
how much return-to-home capability is achievable without a GPS lock by reliance on the 
onboard IMU, or with onboard magnetometer and altimeter alone. An IMU can record spatial 
movements from the launch point and therefore enable the drone to retrace the path to return to 
home. A magnetometer and altimeter allow a drone to fly directly toward the launching point—
assuming it knows where it is—but are incapable of compensating for wind. Current devices also 
drift quickly, making them more suitable for maintaining vehicle orientation than for navigation. 

On the other hand, not every component has to be subjected to reliability testing if the return to 
home feature includes particular component designs or if off-the-shelf components have passed 
reliability testing with specified failure rates. A rotor blade rated at 1,000 hours will not decrease 
the reliability of a system in which other critical components have lives of 100 hours. 

d) Reliability Standards 
Autonomous return to home capability is almost certain to be included in any conceivable set of 
drone specifications. The specification may say something like, “the aircraft has a return to home 
feature that, when triggered, causes it to return to the launching point and land without user 
intervention.”  
The specifications may also define tolerances for the landing point—for example, “within two 
feet of the launching point.” 

                                                
157 NHTSA's recent standard for electronic stability control on busses and trucks is a good example. The 
final rule published in the federal register has more than a dozen pages devoted to arguments over test 
standards in the proposed rule. 49 C.F.R. § 571 (2015). 
158 1,000 test cycles, divided by 4 cycles per flight, multiplied by 20 minutes per flight, multiplied by 5 
scenarios (excluding tests for steps (3) and (5)). 
159 Total test time of 8,333, divided by annual work hours of 2,000, multiplied by the sum of the annual 
salaries for the three test professionals. 
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Difficulties arise, however, when reliability is addressed. It will have only limited safety benefit 
if the return to home system works only some of the time. Using a pure performance-based 
approach to reliability adds a proviso that the return to home feature must work a certain 
percentage of the time, say 99.5%. But why 99.5% as opposed to 85% or 92% or 99.6%? 
Theoretically, the most appropriate figure should be based on a balancing of the magnitude of the 
cost of a failure weighed against the cost of compliance. But, that requires data and there is 
currently not much data for microdrone return to home feature functionality. There is even less 
on the cost of drone accidents.  
One can build a failure rate estimate by careful fault analysis of the components of the system. 
Similarly, one can begin quantifying the cost of improving the failure based on the cost of adding 
an additional or more reliable component to the system. Redundancy almost always improves 
reliability, and it is not difficult to determine the cost of a backup system. Backup systems reduce 
endurance, however, because of additional power consumption and weight.  

In the aviation industry, reliability engineering requires: (1) inventorying every fault that can 
occur in every aircraft component, (2) quantifying the probability of that fault occurring, and (3) 
assessing the risk of failure. An example would be the failure of a pitch link on a helicopter rotor 
blade. The probability of failure depends on the design of the link and the properties of its 
material components. The consequences of failure would be catastrophic: asymmetric lift 
between the two rotor blades would likely cause the rotor blade to separate from the rotor hub. 

In a microdrone, a fault might occur in the power supply to one rotor because the soldered 
connection of one of the motor leads to the power distribution board has failed, resulting in an 
open circuit to that motor. The probability of that occurring is relatively high because wire 
connections consisting of only the solder itself are brittle and weak. The consequences would not 
likely be catastrophic in a multirotor design, because the thrust of the rotors still in operation 
could be increased to ensure stable flight or at least a controlled landing.  

A capacitor on an integrated semiconductor circuit board might fail, rendering a micro-drone’s 
GPS navigation system inoperative. The consequences of an inoperative GPS navigation system 
depend upon how else the drone could navigate in that particular flight regime. 
Fault analysis also recognizes that multiple faults can occur at more or less the same time. 
Rigorous fault analysis must consider all of the possible fault permutations.  
The results can be quantified by use of a fault tree, in which generally accepted probability 
analysis multiplies and adds the probabilities to determine the joint probability of various 
combinations of multiple faults. 

When faults have been identified, their probabilities estimated, and their consequences assessed, 
designers and regulators decide what should be done to reduce the risk of failure. One possibility 
is to redesign the failing component to reduce the probability of failure. Depending on the way in 
which the failure such as that of the pitch link occurred, the component could be redesigned to be 
made of stronger material or of larger dimension. Alternatively, designers could attach the link to 
the pitch horn of the blade or to the upper swashplate in a different way.  

In the case of the broken solder connection, assembly procedures could be modified to require 
that the wire be mechanically connected before it is soldered. This could be achieved by 
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wrapping the wire around or hooking it through a terminal, or by twisting two wires together 
before the connection is soldered. 
If redesign is not likely to be cost-effective, redundancy is another possible corrective action. 
Each rotor blade could be equipped with two pitch links, either one of them strong enough to 
adjust the pitch of the rotor blade throughout its operating range. Two power connections for 
each leg of the electrical circuit could be provided for each motor.  
Another mitigating strategy is to revise component specifications so as to narrow operating limits 
in terms of speed, temperature, or turbulence. 
Engineering science permits the designers of physical components to determine their strength 
and other properties and thus to determine the conditions under which they will break, bend or 
suffer fatigue likely to lead to eventual fractures. 

But, under real-world conditions things often behave differently than theory predicts. Data on 
actual behavior is essential for good failure analysis and it often is unavailable in sufficient 
quantities to make rigorous fault analysis feasible before an aircraft enters operation. For 
example, a power lead from a microdrone motor might pop loose from a poorly soldered 
connection once, but how often will that happen? Usually, full fault analysis is not possible until 
after an aircraft system is in service for many months or years. Before that, averages of test 
results can be used, but averages such as mean time between failure (MTBF) are not enough. 
Failures often exhibit wide deviations around the average, and a particular fault may have such a 
catastrophic consequence that it would be insufficiently protective of safety to focus on the 
average circumstances under which it will occur, rather than conditions that might cause it to 
occur at the 10%, 5%, or 1% probability level. 
Especially likely points of failure involve the three different RF links involved in drone missions: 
the control link, the GPS link, and the Internet connection.160 Control link failure is the most 
basic of these, but when that happens, well-functioning autonomous safety protocols can resolve 
the situation safely. Almost all of the autonomous safety modes depend upon GPS lock. 
Complete loss of control requires the loss of the control link and GPS lock. Live Internet 
connectivity is not essential for safe flight, but it is necessary to provide live telemetry to 
customers and vendors, and to provide moving map displays to DROP and photographer.  

6. Duty to Provide Adequate Product Support 
a) Foundation of Duty 

An important aspect of drone sales is that product support is necessary to realize the potential of 
the product. Indeed, the “product" comprises a combination of hardware, software, 
documentation and post-sale product support. It is rare that a drone works out of the box exactly 
as advertised and in accordance with all of the detailed documentation. There are simply too 
many things that can change between the time the advertisement and documentation are written 
and published and the time when the drone is delivered. In addition, frequent firmware and other 
software updates are inevitable. Bugs in the computer code are discovered and must be fixed. 
Likewise, new features are added.  

Product support is necessary to deal with these realities. It must be reasonably available, 

                                                
160 See supra § III.E.1 (summarizing relevant radio technology and its modes of failure). 
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available in the language of the purchaser, delivered by people knowledgeable about the product, 
and reasonably adaptable to the customer’s actual problems.  
When this kind of product support is not available, the product is defective and the strict liability 
of Section 402A is implicated. Some support for a duty to provide adequate product support can 
be found in the numerous cases holding aircraft manufacturers liable for failure to warn operators 
of defects and risks discovered after design, manufacture, and sale.161 
Just as failure to warn can make a product defective,162 it can lead to a negligence claim, even if 
the product is not defective.163 Liability for negligent failure to warn arises when "(1) the 
defendant knows or has reason to know: (a) of that risk; and (b) that those encountering the risk 
will be unaware of it; and (2) a warning might be effective in reducing the risk of harm."164 In 
addition, “[e]ven if the defendant adequately warns of the risk that the defendant's conduct 
creates, the defendant can fail to exercise reasonable care by failing to adopt further precautions 
to protect against the risk if it is foreseeable that despite the warning some risk of harm 
remains.”165  
The Third Restatement of Torts recognizes that a mere warning may be insufficient; the supplier 
may be obligated to train. "In a limited number of cases, the relationship between the defendant 
and the plaintiff suggests that the defendant in order to exercise reasonable care must properly 
instruct the plaintiff as to how to proceed safely."166 At least one case has accepted the 
proposition that the duty to warn extends to providing post-sale product support under federal 
aviation regulations.167 
The duty to warn should extend to the drone industry. The drone industry, just like the airline 
industry, involves a high-technology product that may have hidden bugs or anomalies not 
apparent from brief user instructions and warnings. The supplier is in the best position to know 
of the anomalies, and its duty to instruct includes adequate product support. Burdening or 
hindering access to product support represents a breach of the duty. Failing to provide reasonably 
competent product support specialists who are able to communicate in the language of the buyers 
also constitutes a breach. 

Effective representation by counsel who pursue this theory will go beyond a plaintiff’s testimony 
about product support waiting times and inadequate product support and will request discovery 
of the vendor’s records as to how its product support works.  
The obligation to provide adequate product support also arises from distribution of firmware and 
software updates and the law of product recalls, which is considered in Section VII.B. A plaintiff 
pursuing a claim based on inadequate product support would argue that the distribution of a 

                                                
161 See Sonja A. Soehnel, Annotation, Products liability: personal injury or death allegedly caused by 
defect in aircraft or its parts, supplies, or equipment, 97 A.L.R.3d 627 § 4 (1980). 
162 RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 2 (1998). 
163 RESTATEMENT (THIRD) OF TORTS: PHYSICAL & EMOTIONAL HARM § 18 (2010).  
164 Id. § 18(a). 
165 Id. § 18(b). 
166 Id. § 18 cmt. d.  
167 Burroughs v. Precision Airmotive Corp., 93 Cal. Rptr. 2d 124, 138 (Ct. App. 2000) (holding that 
successor had duty to provide service bulletins and other service information, imposed by federal law; 
state standards for duty to warn were preempted).  
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firmware or software update is a limited product recall. Typically, notices of such updates tell 
users not to continue operating the drone until the update has been accomplished, and some 
implementations of flight software will not let the motors start unless the update has been 
installed.  
It is not uncommon for updates to install incorrectly, or when installed, to render certain product 
features inoperative. When that occurs, a user’s only recourse is to contact the vendor’s product 
support for assistance in solving the problem  

When product support is inadequate for this purpose, the user may do any of three things. First, 
he may essentially scrap the drone and write off his investment. Second, he may fly the drone 
despite the defect introduced by the software update. Finally, he may roll back the drone 
operating system to its status before the update was attempted, thus rendering inoperative 
whatever performance or safety enhancements the update contained. The second and third of 
these options introduce safety risks. Of course, the fact that the operator did not choose the first 
option increases the degree of responsibility for any accident caused by the operator.  
It must be conceded, however, that case law and secondary authority explicitly supporting a duty 
to provide product support are thin. This article argues that a duty to provide product support 
should exist and that such a requirement is consistent with the widely-accepted duty to warn. 

b) Duty to Train 
The duty to warn extends, in appropriate circumstances, to a duty to train.168 Post-sale product 
support is one relatively inexpensive way to train users. 
Glorvigen v. Cirrus Design Corporation arose from the fatal crash by a new owner of a Cirrus 
aircraft.169 The evidence showed that the pilot took off in marginal VFR,170 entered IMC,171 and 
stalled the aircraft while trying to make a 180-degree turn back to VMC.172 The next of kin of the 
pilot and his passenger sued Cirrus and its training contractor for failure to provide transition 
training on the aircraft's autopilot as promised. The evidence showed that proficiency with the 
autopilot would have enabled a non-instrument rated pilot like the deceased to exit IMC safely. 
The jury awarded $12 million to the passenger's estate and $7.4 million to the pilot's next of kin. 
It allocated 37.5% of the fault to Cirrus, 37.5% to UNDAF, and 25% to the pilot.173 The 
intermediate appellate court reversed. It agreed that Cirrus has a duty to warn: 

                                                
168 Hendrix v. Phillips Petroleum Co., 453 P.2d 486, 496-97 (Kan. 1969) (holding that manufacturer of 
L.P. gas had a duty to instruct a distribution or to ascertain that he has been instructed in the use and 
handling of the product); cf. Burroughs, 93 Cal. Rptr. 2d at 138 (holding that successor had duty to 
provide service bulletins and other service information, imposed by federal law; state standards for duty 
to warn were preempted). 
169 Glorvigen v. Cirrus Design Corp., 796 N.W.2d 541, 543-44 (Minn. Ct. App. 2011), aff’d 816 N.W.2d 
572, 583-84 (Minn. 2012). 
170 Visual Flight Rules—conditions, according to the Federal Aviation Regulations, good enough to 
permit pilots to see and avoid other aircraft and obstructions. 
171 Instrument Meteorological Conditions—conditions worse than VFR, in which flight is legal only 
according to an instrument flight plan and detailed clearances from air traffic control operators. 
172 Visual Meteorological Conditions—conditions in which VFR flight is permissible. 
173 Glorvigen, 796 N.W.2d at 548. 
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In general, a supplier has a duty to warn end users of a dangerous product if it is 
reasonably foreseeable that an injury could occur in its use.” Gray v. Badger Mining 
Corp., 676 N.W.2d 268, 274 (Minn. 2004). The duty to warn includes providing 
adequate instructions for the safe use of the product. Id. “[W]here the manufacturer 
or the seller of a product has actual or constructive knowledge of danger to users, 
the seller or manufacturer has a duty to give warning of such dangers.” Frey v. 
Montgomery Ward & Co., 258 N.W.2d 782, 788 (Minn. 1977). “To be legally 
adequate, the warning should (1) attract the attention of those that the product could 
harm; (2) explain the mechanism and mode of injury; and (3) provide instructions 
on ways to safely use the product to avoid injury.” Gray, 676 N.W.2d at 274. The 
adequacy of a warning must be evaluated in light of the knowledge and expertise 
of those who may be reasonably expected to use the product. Dahlbeck v. DICO 
Co., 355 N.W.2d 157, 163 (Minn. App. 1984), review denied (Minn. Feb. 6, 
1985).174 

The duty to warn, however, did not extend to a duty to provide transition flight training for a new 
model of aircraft. 
The Minnesota Supreme Court has endorsed the broad statement of principles contained in the 
Restatement (Second) of Torts § 388 (1965) with respect to suppliers of goods. Gray, 676 
N.W.2d at 274. According to section 388: 

One who supplies directly or through a third person a chattel for another to use is 
subject to liability to those whom the supplier should expect to use the chattel with 
the consent of the other or to be endangered by its probable use, for physical harm 
caused by the use of the chattel in the manner for which and by a person for whose 
use it is supplied, if the supplier 
(a) knows or has reason to know that the chattel is or is likely to be dangerous for 
the use for which it is supplied, and 
(b) has no reason to believe that those for whose use the chattel is supplied will 
realize its dangerous condition, and 
(c) fails to exercise reasonable care to inform them of its dangerous condition or of 
the facts which make it likely to be dangerous. 
Restatement (Second) of Torts § 388.175 

The court rejected the plaintiffs' theory that Cirrus had a duty to train the pilot to an adequate 
level of proficiency because it found no support in the case law for extending the duty to warn so 
far. The duty extended only to putting a purchaser of an aircraft on notice as to particular dangers 
in its use, and providing adequate information on how to avoid the danger.176 Cirrus did that by 
providing an autopilot supplement in its flight manual and written material on how to exit IMC 
with the autopilot during the transition training.  

                                                
174 Id. at 550. 
175 Id. at 550-51. 
176 Id. at 551-52. 
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It also found the claims barred by the educational malpractice doctrine, a common law defense 
recognized in Minnesota.177 
Glorvigen can be distinguished in the drone context. A drone-accident plaintiff would not argue 
that the drone vendor should have trained all the operators of its products to a particular level of 
proficiency; she would argue that inadequate levels of product support made even the most 
skillful and proficient pilot likely to lose control of the drone. 

C. Injury 

Despite wide variation in the standards for establishing breach of duty and causation, virtually 
every jurisdiction and the Restatement accept the proposition that negligence and product-defect 
liability result only when the plaintiff can prove physical injury or damage, not for economic 
loss.178 This is known as the “economic loss” rule. Its rationale is that allowing tort liability for 
economic losses generally turns every breach of contract case into a tort case in which punitive 
damages and other damages far in excess of what is available for breach of contract would be 
available. The classic measure of damages for breach of contract is “benefit of the bargain.” 
Consequential damages are not generally available for breach of contract unless it can be shown 
that the parties specifically contemplated them. 

D. Causation 

All schemes for imposing negligence liability require causation,179 though some commentators 
criticize the utility of the concept.180 Legal causation does not, however, require that the accused 
conduct be both necessary and sufficient to cause the injury. There are three principal views on 
legal causation. As Professor Wright and his collaborators explain, the most stringent view of 
causation (“strict necessity”) requires that the result would never occur in the absence of the 
accused conduct.181 The weakest view (the “NESS182 criterion”) requires only that the accused 
conduct be part of a set of conditions that was sufficient for the result.183 An intermediate view 
(“but for”) requires that the accused conduct be necessary for the result, given all the other 
conditions.184 Accidents, especially those involving sophisticated technology, often produce 
situations in which causation is inherently uncertain,185 and some in which causation is over-
determined. For example, what should the law do when a victim is shot in the head by two 

                                                
177 Id. at 555. 
178 See Giddings & Lewis, Inc. v. Industrial Risk Insurers, 348 S.W.3d 729, 733 (Ky. 2011) (explaining 
economic loss rule); RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 21 (1998). 
179 See Richard W. Wright et al., Causation, Liability and Apportionment: Comparative Interdisciplinary 
Perspectives, 91 CHI.-KENT L. REV. 445, 445 (2016) [hereinafter Wright, Introduction]. 
180 See Richard W. Wright & Ingeborg Puppe, Causation: Linguistic, Philosophical, Legal and Economic, 
91 CHI.-KENT L. REV. 461, 494-97 (2016) (explaining Calabresi view that causation theories operate ex 
post and thus interfere with efficient deterrence and dispute resolution). 
181 Id. at 473-81 (2016) (explaining and criticizing strict necessity approach). 
182 “[N]ecessary for the sufficiency of a sufficient set.” Wright, Introduction, supra note 179, at 447. 
183 Wright & Puppe, supra note 180, at 481-89 (explaining and arguing for acceptance of NESS criterion). 
184 Wright, Introduction, supra note 179, at 446. 
185 Id. at 449. 
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different assailants and either bullet would have been fatal by itself?186 Some commentators and 
courts have sought to escape the difficulties with the three traditional causation formulas by 
focusing on the probability that a particular actor’s conduct would cause the type of injury that 
resulted, regardless of whether it actually did.187 Allocating liability in uncertain circumstances is 
the particular concern of this article, which focuses on the possibilities beginning in Section 
IV.D.1. 
The number of factual permutations contributes to the variety in legal approaches to concurrent 
causation. One possibility is that Actor #1 breaches her duty in a way that would have caused 
injury, but something else causes injury first and interrupts the chain of causation. For example, 
suppose a small drone navigation system has a defect in its navigation software that will cause it 
to lose attitude orientation when the temperature of the drone exceeds 100°F. The operator of the 
drone flies it in a part of the country where the temperature regularly exceeds 100°F.  
Before the defective drone is flown in such temperatures, however, the operator fails to do a 
sufficient preflight inspection and the defective drone takes off with a cracked rotor blade. The 
rotor blade fractures in flight, causing a crash resulting in a total loss. The navigation software 
designer was at fault under several potential legal theories ranging from negligence for 
delivering a defective product to delivery of an inherently dangerous product into commerce, but 
the designer has no liability at all because its fault did not cause the accident.  
On the other hand, consider the same basic facts except this time the drone begins behaving 
anomalously in 105°F weather and the rotor blade fractures along the crack because of the 
resulting loads on the aircraft. A crash would not have occurred but for the rotor blade fracture 
and the navigation system malfunction. Both the operator’s failure to inspect the drone and the 
designer’s mistake in the navigation software caused the accident here.  

Tort law takes one of two basic approaches in this circumstance. The traditional common law 
concept of “joint and several liability” holds both the operator and the software designer liable 
for the full damages. The plaintiff could decide to sue both of them or sue only one or the other. 
By statute, in almost every state, the losing defendant could seek contribution from the absent 
defendant if damages are awarded. 
The newer approach allows the plaintiff to sue whichever causal agent she wants. The other 
causal agents do not become indispensable parties, but she can recover no more from any 
defendant then his proportionate contribution to the accident, as determined by the fact finder.188 
On the facts of the hypothetical it’s essentially arbitrary whether the broken rotor blade was 80% 
responsible, only 10% responsible, or somewhere in between. Establishing the relative 
percentages of liability would be entirely up to the fact finder, although that decision would 
likely be informed by factual and expert testimony about how much damage would have resulted 
from the software malfunction without the rotor blade fracture.  

                                                
186 Florence G’Sell, Causation, Counterfactuals and Probabilities in Philosophy and Legal Thinking, 91 
CHI.-KENT L. REV. 503, 509 (2016) (posing hypothetical); id. at 512 (explaining that but-for criterion 
results in conclusion that neither assailant “caused” the injury). 
187 Id. at 520-21 (explaining “probabilistic” approach: “[I]n the probabilistic perspective, a condition is 
the cause of some result if it increased the probability that the result would occur.”) 
188 As the discussion of the Montana and Florida statutes, see infra § IV.D.4, shows, different states 
establish different thresholds for proportionate liability. 
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The traditional joint and several liability rule may seem unreasonable in holding each tortfeasor 
responsible for the entire amount of the damages, but several economic and moral arguments 
support it. One argument approaches the rule from the injured plaintiff's perspective. If the 
plaintiff was injured through no fault of her own, she should not have to bear the loss; the parties 
who caused the loss should pay for it. If several parties were responsible for the plaintiff’s loss, 
and only some of them have sufficient resources to compensate the plaintiff for her injuries, she 
should be able to recover a judgment for the full amount; otherwise she will be 
undercompensated.  
The second argument is that the law should discourage irresponsible behavior. If one 
irresponsible actor partially escapes legal responsibility because someone else acted 
irresponsibly as well, the incentive to act responsibly is weakened. At the limit, if many people 
act irresponsibly under circumstances where the aggregate injury is great but the contribution of 
each is small, no one bears much responsibility.189  

1. Apportioning Fault Between Man and Machine 
Drones, like helicopters, airplanes, trains, and self-driving cars, require interaction between 
human operators and increasingly autonomous machines. Penn Maritime, Inc. v. Rhodes 
Electronic Services, Inc.190 involved a claim that a defect in a tugboat's autopilot caused the tug 
to push its barge into another. The case illustrates the need for a plaintiff to rule out operator 
error as the cause of an accident involving an autopilot. After a bench trial, the district court 
found it at least equally probable that the tug captain’s failure to operate the autopilot correctly 
caused the accident.191 The autopilot had intermittently malfunctioned and allegedly did so again 
after the captain re-engaged it after a period of hand steering in the Delaware River.192 Some, but 
not all, post-accident testing showed that the autopilot steered the vessel incorrectly when re-
engaged.193 Servicing showed that certain settings on the autopilot were incorrect. After they 
were corrected, the autopilot performed normally.194  

The tug's owner sued the supplier and installer of the autopilot (Rhodes) for breach of contract 
and warranty, and for products liability. It brought similar claims against Navico, the autopilot's 
manufacturer. The tug owner also sued the operator of the other barge for negligence. Rhodes 
filed a third party complaint against the manufacturer of the tug, alleging that excessive 
vibrations resulting from faulty design of the tugboat caused the autopilot to malfunction.195 
The evidence did not establish who was responsible for the erroneous autopilot settings and, in 
any event, did not establish that the settings could have caused the accident.196 The court 
reviewed the ways in which the autopilot could be re-engaged after a period of hand steering and 
concluded that failure to reset the autopilot's heading separately from the hand steering heading 

                                                
189 This is the case with much pollution injury. 
190 Penn Mar., Inc. v. Rhodes Elec. Servs., Inc., 41 F. Supp. 3d 507 (E.D. La. 2014). 
191 Id. at 509. 
192 Id. at 513-14. 
193 Id. 
194 Id. at 514. 
195 Id. at 514-15. 
196 Id. at 518-19. 
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could cause the autopilot to veer the vessel off course when it was re-engaged.197 The captain 
testified that he operated the autopilot correctly,198 but the court explained that his testimony was 
not credible: He was under pressure to remember facts in a certain way, his demeanor at trial was 
“shaky,” he demonstrated familiarity with only the most basic features of the autopilot, and gave 
contradictory testimony about how he operated it. 199 

The tug’s operator also claimed products liability under the abnormally dangerous doctrine of 
Restatement (Second) of Torts sec. 402A.200 But, its failure to rule out operator error defeated the 
inference of causation necessary to make this a viable theory.201 
Ferguson v. Bombardier Services Corporation, arose from a crash of a Sherpa C-23B+.202 After 
one hour of flight, the aircraft encountered strong turbulence, which caused the aircraft initially 
to pitch up and, after a pitch correction, to enter a dive that impacted the ground, killing 18 
passengers and 3 crew members—all members of the Virginia National Guard. The court 
summarized the conflicting theories about what happened: 

The appellants allege that two design defects and a manufacturing defect, all in the 
autopilot system, conspired to cause the aircraft to crash following the gust of wind. 
They contend that the autopilot system went into ‘torque limiting mode’ improperly 
and that the autopilot should have been equipped with an annunciator in order to 
warn the pilot when it went into torque limiting mode. They also contend that the 
autopilot system was improperly installed, leading to a cable jam that prevented the 
aircraft from recovering once it began its dive. The appellees argue the aircraft was 
improperly loaded, such that the center of gravity was beyond the limit allowed for 
the safe operation of the aircraft. According to the cockpit voice recorder, moments 
before the turbulence one of the pilots left the cockpit and walked to the rear of the 
aircraft; the appellees contend that the pilot's movement allowed the aircraft to 
become more unstable, causing the aircraft to crash following the gust of wind.203 

The plaintiff’s expert, who was prepared to testify that the autopilot was defective, allowing 
oscillations in pitch to develop, admitted during a Daubert hearing that improper loading would 
have produced the same oscillations. His testimony therefore was excluded.204 The testimony of 
another expert, that the FARs required the autopilot to be equipped with an annunciator that 
would have shown it to be in torque limiting mode, was excluded after the plaintiff was unable to 
identify any such regulation.205 The appellate court found no errors and affirmed.206 

                                                
197 Id. at 521-22. 
198 Id. at 522. 
199 Id. at 522-24. 
200 Id. at 523 (describing claims). 
201 Id. at 524. 
202 Ferguson v. Bombardier Servs. Corp., 244 F. App’x 944, 947 (11th Cir. 2007). 
203 Id. at 947. 
204 Id. at 948. 
205 Id. 
206 Id. at 952. 
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Penn Maritime illustrates an evidentiary phenomenon likely to exist in the drone context, but not 
in the manned aircraft context: the survival of the human operator and his availability to give 
testimony. Most accidents, even those involving vehicle system defects, can be prevented or their 
consequences mitigated by skillful operator action. When the operator is available, he can offer 
explanation as to the cause of the accident, which would be unavailable if he had died in the 
accident. The operator’s availability may result in shifting the evidentiary record toward vendor 
liability. It may also, however, result in the opposite effect as a result of effective cross-
examination of the operator, as in the Penn Maritime case.  
Sometimes multiple human actors are involved.207 Simon v. United States arose after air traffic 
control cleared an airplane for a published approach, where the requisite navigational facilities 
did not exist.208  

The court summarized the negligence theories: 
Relying on a chart published by the Federal Aviation Administration in 
Washington, D.C., the pilot sought clearance to complete a Simplified Directional 
Facility (SDF) approach due to the poor weather conditions. FAA air traffic 
controllers based at Indianapolis cleared the approach despite the fact that the 
instrumentation required for the landing at Somerset Airport had not been 
operational for several years. While attempting to land, the plane struck a radio 
tower and crashed. 

Plaintiffs alleged (1) negligence in the publication at Washington of a chart 
incorrectly showing that a long-inactive instrument landing approach at the airport 
was active; and (2) the negligence of Indiana-based air traffic controllers in clearing 
the pilot for an approach that was out of service, neglecting to monitor the radar 
during the flight's landing approach, failing to alert the pilot that he was in peril of 
striking an obstacle, and failing to respond to the pilot’s last-minute radio 
communications.209 

The aviation and maritime accident cases discussed in the preceding paragraphs are unusual in 
their focus on system error; aviation accident litigation almost always involves the possibility of 
pilot error as one of the causes of the accident. Because of this possibility, a DROP should take 
certain precautions when he knows the drone will crash instead of continuing on its path. This 
would come into play when a drone is about to collide and none of its emergency mechanisms 
kick in. The operator can prevent it from continuing and plowing through a crowd of people by 
stopping the motors, causing it to fall out of the sky, and turning off its propellers to minimize 
harm to the crowd.  

Drone accident litigation also is likely to involve another kind of human factor: fault by the 
victim. Assumption of the risk would arise as a defense if the victim intruded into an area where 
drones were operating and the public had been excluded. The last clear chance doctrine would 

                                                
207 See Universal Aviation Underwriters v. United States, 496 F. Supp. 639, 648 (D. Colo. 1980) (finding 
air traffic controller negligent for failing to consult television display of radar information which shows 
the aircraft were on collision course). 
208 Simon v. U.S., 805 N.E.2d 798, 800-01 (Ind. 2004). 
209 Id. 
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arise if a drone was obviously behaving erratically, and the victim failed to get out of the way 
when she had the opportunity. 

2. Independent Contractors 
The rule for allocating responsibility between employers and their agents is a special case of 
concurrent liability. In the paradigmatic case, the actor was the agent and not the principal. The 
doctrine of respondeat superior, however, imposes vicarious liability on the principal for his 
agent’s actions.  
Employers of independent contractors are not liable for the negligence of the independent 
contractor,210 subject to exceptions for abnormally dangerous activities211 and for peculiar 
risks.212 Employers may be liable, however, for negligence in selecting the contractor,213 for 
failure to inspect the contractor’s work,214 negligence and exercising control retained by the 
employer,215 and negligence in giving directions.216 

3. Multiple Vendors 
Modern high-technology consumer products are rarely designed and manufactured by only one 
vendor; often, layers of subsystems, each designed and manufactured by a different supplier are 
finally assembled by the entity whose brand appears on the finished product. This trend 
complicates any process for apportioning liability. Did the final assembler breach its duty or was 
it the designer of the accelerometer package, which was integrated into a different 
manufacturer’s inertial measurement unit, which was integrated into yet another vendor’s 
navigation control subsystem, which was integrated into the final product assembled by yet 
another enterprise.  
The answer is that all of these parties can be held liable. Each designer and manufacturer of the 
finished product or its sub-components is subject to product liability claims with respect to 
hardware and software. All have a duty to the end user. Section 5 of the Restatement (Third) of 
Torts holds component sellers and distributors liable for harm caused by products into which 
those components are integrated when the component is defective or when the component by 
itself is not defective, but the component supplier participates in the integration of the component 
into the final product and that integration makes the final product defective.217 

Downstream vendors do not escape liability by showing that the defect was in the components 
they assembled or sold, and was not caused by any independent action on their part.218 The 

                                                
210 RESTATEMENT (SECOND) OF TORTS § 409 (1979); RESTATEMENT (THIRD) OF TORTS: PHYSICAL & 
EMOTIONAL HARM § 57 (2010). 
211 RESTATEMENT (THIRD) OF TORTS: PHYSICAL & EMOTIONAL HARM § 58 (2010). 
212 Id. § 59. 
213 Id. § 411. 
214 Id. § 412. 
215 Id. § 414. 
216 Id. § 410. See generally id. § 55 cmt. a (bases of direct liability). 
217 RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 5 (1998). 
218 Id. § 1 cmt. e. 
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analysis for each of the vendors is the same; the factual specifics of their hardware and software 
choices are different. 
In re Aircraft Crash Litigation Frederick, Md.219 illustrates the detailed factual inquiry necessary 
to sort out products liability claims against multiple suppliers in air crashes. The court 
summarized the cause of the accident and the opposing contentions by the parties: 

The Air Force's analysis of possible causes of the crash led it to conclude that  
for undetermined reasons, the aircraft pitch trim moved to the full 
nose down position. The aircraft then rapidly pitched over, most 
likely upon release of the auto-pilot, and induced sufficient negative 
‘G’ forces to cause [its AC] generators to trip off line, resulting in 
the loss of all AC electrical power. The pitch trim could not then be 
moved electrically. This condition, while unusual, can be controlled 
[manually, by use of the trim wheel] if prompt corrective action is 
taken; however, if corrective action is delayed approximately 8 
seconds, the aircraft pitch angle will be greater than 30 degrees nose-
down and the airspeed in excess of 350 knots indicated airspeed. 
Under these conditions, the aircraft cannot be controlled until the 
pitch trim is moved toward neutral. While it is evident that recovery 
was delayed, the reason for the delay is unknown. The aircraft 
became uncontrollable and entered a steep descent. During the rapid 
descent, an explosion occurred at approximately 1300 feet above 
ground level followed immediately by catastrophic failure, and 
complete break-up of the aircraft. 

AF Investigation Report at ‘Synopsis’ and Tab 3.3. It is not disputed that rapid 
pitch-over of the aircraft could and did result in loss of AC electrical power so that 
the pitch trim could not be corrected electrically. It is also not disputed that after 
approximately eight seconds of full nose-down pitch, the aircraft pitch angle and 
airspeed would be such as to make manual recovery of the aircraft impossible. 
B. The Parties' Contentions Concerning the Accident's Cause 

The parties to the instant Motions differ markedly in their theories of the cause of 
the aircraft's pitch-over and succeeding events leading to loss of the airplane. 
Plaintiffs contend that the aircraft's sudden pitch-over was the result of a ‘flight 
control system malfunction,’ most probably in the autopilot. They claim that the 
aircraft's automatic flight control system was designed to be capable on its own 
(i.e., without a command from the flight crew) of moving the pitch trim to the full 
nose down position while the autopilot is in altitude hold mode. They contend that 
the flight control system was defective in that the autopilot was ‘failure prone’ and 
because ‘single point failures in the system [that] caused uncommanded trim inputs 
which threatened the safe operation of the plane were commonplace.’ Plaintiffs' 
contend that the design of the aircraft's autopilot was defective in several respects. 

                                                
219 In re Aircraft Crash Litig. Federic, Md., 752 F. Supp. 1326 (S.D. Ohio 1990). 
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Plaintiffs allege that the aircraft was defectively designed such that the combination 
of unanticipated trim malfunction leading to full nose-down attitude and complete 
loss of electrical power . . . led to a ‘failure mode’ from which a reasonably qualified 
pilot such as Captain Emilio could not recover the aircraft . . . . 
Defendants contend that the aircraft's pitch-over was caused when Mrs. Emilio, 
seated in the left pilot's seat, inadvertently activated the trim stabilizer switch 
located on the left pilot's control wheel, and that the failure to correct the pitch-over 
in the time period before the situation became irremediable was due to human error 
attributable to Captain Emilio .220 

The court held that the claims of negligent flight testing were barred by the ‘Boyle defense’ for 
contractors who follow government specifications.221 It found that the rate-of-trim movement, 
tripping off of the electrical generators under negative G forces, and the placement of the manual 
trim wheel were all approved by the Air Force.222 Among other things, the Air Force rejected 
specific Lear suggestions to improve the safety of the autopilot: 

It is undisputed that Lear made two design suggestions which directly relate to 
enhancing the safety features of the autopilot, and that the Air Force rejected those 
suggestions. Plaintiffs contend that the autopilot was defective, in part, because it 
used a vacuum tube system instead of a solid-state system. In 1958, Lear 
recommended that the autopilot's yaw axis components be transistorized to improve 
the autopilot's reliability and hence the KC-135A's lateral stability when the 
autopilot was engaged. The Air Force rejected this proposal to transistorize the 
autopilot. Plaintiffs also contend that the autopilot should have been accompanied 
by additional warning lights and aural signals to alert the crew to autopilot 
malfunction. Lear's recommendation that such additional warning and monitoring 
systems be included was likewise rejected by the Air Force as unnecessarily 
complicating the autopilot's design.223 

In order to fix responsibility for particular design decisions involving the cockpit layout and the 
autopilot (and therefore to decide whether the Boyle defense applied), the court exhaustively 
reviewed the history of the EC-135N aircraft involved in the crash.224 The Air Force procured the 
autopilot separately and provided it to the airframe designer and manufacturer, having earlier 
written specifications for it.225 Subsequent testing and discussions among Boeing, Lear, and the 
Air Force resulted in design changes.226 
 

                                                
220 Id, at 1333 (describing plaintiff allegations). 
221 Id. at 1350. 
222 Id. at 1351. 
223 Id. at 1357-1358. 
224 Id. at 1343-1345. 
225 Id. at 1345. 
226 Id. at 1346-1347. Appendices to the opinion detail some of the crucial testimony before the court. 
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The Aircraft Crash Litigation case illustrates an effort to sort out responsibility among multiple 
suppliers. 

4. Indeterminate Causation 

Legal commentators have wrestled with two examples involving indeterminate causation, which 
is defined as the uncertainty as to who should bear liability when multiple actors may have 
caused an injury. In the first classic example, two factories discharge pollutants into a river and 
the fish in the river die. Each factory’s effluent was sufficient to kill the fish. As a practical 
matter, the individual responsibility of each factory cannot be established.227 This is an example 
of over-determined causation. An older example involves two fires set by two independent 
actors. The fires merge and burn down the plaintiff’s house. Either fire would have been 
sufficient by itself, so neither can be said to have been the “but-for” cause of the victim’s loss.228  

The drone analogy involves a vehicle with two defects introduced by distinct subsystem 
suppliers. The first would be a GPS navigation system that lost a GPS signal whenever the drone 
flew near an object, and the second would be an attitude control system that caused the drone to 
tumble and become uncontrollable whenever it lost its GPS signal. Either defect was sufficient to 
cause the drone to crash. 
The second classic example involves two hunters shooting at a duck and one accidentally hits 
and kills a human victim. It is certain that one of them killed the victim, but forensic 
investigation cannot determine which one (this would be the case if they shot shotgun pellets 
rather than rifle bullets). Who is liable?229 This type of uncertainty is more common in the drone 
context. Was it the return-to-home logic in the flight control system or the GPS receiver that 
caused the flyaway and the crash? 
Traditionally, “[a]t common law, ‘if the concurrent negligence of two or more persons causes an 
injury to a third person, they are jointly and severally liable and the injured person may sue them 
jointly or severally and recover against one or all.’”230 Allocation of liability among all those 
responsible was left to the separate law of contribution: 

The right of contribution is established by statute, while the right to indemnity 
invokes equitable principles. Contribution and indemnity are similar in that the 
essential purpose of both is to shift one’s losses to another. The objective of 
contribution is to allocate liability among all responsible parties. Contribution 
distributes loss among joint tortfeasors by requiring each tortfeasor to pay his or 
her proportionate share based upon his or her proportion of the negligence which 
proximately caused the plaintiff's injuries. Conversely, indemnity “shifts the entire 

                                                
227 See Michael Faure, Attribution of Liability: An Economic Analysis of Various Cases, 91 CHI.-KENT L. 
REV. 603, 606 (2016) (describing example). 
228 Samuel Ferey & Pierre Dehez, Overdetermined Causation Cases, Contribution and Shapely Value, 91 
CHI.-KENT L. REV. 637, 637-638 (describing example). 
229 See Faure, supra note 227, at 607 (describing example). 
230 Metro Aviation, Inc. v. United States, 305 P.3d 832, 837 (Mont. 2013) (quoting Black v. Martin, 292 
P. 577, 580 (Mont. 1930)) (answering certified question; prohibiting indemnity claim among joint 
tortfeasors). 
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loss from the one who has been required to pay it to the one who should bear the 
loss.”231 

Traditionally, a plaintiff did not have to sue everyone who might have been responsible. “It has 
long been the rule that it is not necessary for all joint tortfeasors to be named as defendants in a 
single lawsuit.”232 Transitioning to a proportionate-several liability regime did not change this.233 
A defendant who was held fully liable had a remedy in a subsequent contribution action,234 or the 
defendant might implead others with potential joint liability.235  

Now, the traditional all-or-nothing approach to negligence liability has largely been replaced by 
comparative fault concepts. “If the plaintiff has been contributorily negligent in failing to take 
reasonable precautions, the plaintiff’s recovery in a strict-liability claim under §§ 20–23 for 
physical or emotional harm is reduced in accordance with the share of comparative responsibility 
assigned to the plaintiff.”236 This comparative fault concept applied to allocating responsibility 
between the plaintiff and a single defendant has been extended to allocate responsibility among 
multiple defendants. 
The third Restatement significantly expands the second Restatement’s treatment of the 
interrelation of foreseeability of harm, proximate causation, and multiple causes.237 The third 
Restatement consistently recognizes the national trend away from common-law joint and several 
liability. It offers four alternative approaches, each of which enjoys substantial support in state 
statutory law: 

• Joint and several liability, with modifications  
• Proportionate several liability  
• Proportionate several liability with a floor or threshold  
• Joint and several liability with reallocation of uncollectible judgments  

Hart v. Cessna Aircraft illustrates the interrelationship between liability actions involving fewer 
than all joint defendants and subsequent contribution actions.238 In Hart, a plane crashed because 
the aircraft had no deicing equipment. The widow of a passenger killed in the light-airplane crash 
unsuccessfully sued the pilot. She then sued the manufacturer of the aircraft, Cessna. Cessna, 
then, impleaded the pilot, who had won the first lawsuit, seeking contribution. The Minnesota 
Supreme Court considered whether the contribution action was barred by the judgment in the 
first action.239 

                                                
231 305 Id. at 834. 
232 Clay v. AIG Aero. Ins. Servs., 61 F. Supp. 3d 1255, 1267 (M.D. Fla. 2014) (denying motion to dismiss 
for failure to join other mechanics as indispensable parties). 
233 Id. 
234 Id. 
235 Id. (noting possibility of impleader). 
236 RESTATEMENT (THIRD) OF TORTS: PHYSICAL & EMOTIONAL HARM § 25 (2010). 
237 See Id. § 29-36. 
238 Hart v. Cessna Aircraft Co., 276 N.W.2d 166 (Minn. 1979). 
239 Id. at 167 (summarizing litigation and stating issue). 
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The court held that an obligation to contribute depends on underlying liability. Thus, the pilot 
could not be held liable in the contribution action. But, the court recognized an equitable 
dilemma and sought to craft an equitable solution: 

[C]ontribution is an equitable action, and the rules governing its use should promote 
the fair and just treatment of the parties. . . . In the instant case, if Cessna is found 
negligent and cannot claim contribution from Vogt, it may be required to pay more 
than its share of the plaintiff’s loss. Although we do not want to impose liability on 
the previously successful defendant, Vogt, we do not want the second defendant, 
Cessna, to bear the entire burden of the plaintiff's loss if he can show that Vogt’s 
negligence contributed to that loss. 
We believe there is an equitable solution to this apparent dilemma. The plaintiff 
does have, and should have, the right to control his own lawsuit—to sue or not to 
sue whomever he chooses. However, if there are two or more possible defendants 
and plaintiff elects to sue them piecemeal, it is he who should bear any risk imposed 
by using that procedure.240 

The court held that Vogt was not liable to the plaintiff or to Cessna based on claim preclusion.241 
Cessna, however, was liable only for the percentage of fault the jury apportioned to it, assuming 
that was less than 50%.242 
It is a growing trend in tort law to apportion liability according to relative causation.243 At 
common law, apportionment was not possible; joint tortfeasors were jointly and severally liable 
for the entire judgment.244 The effect of this doctrine was blunted, however, by the possibility of 
the tortfeasors recovering against each other for contribution.245 Contribution did not take into 
account relative causation, however. An intervening cause simply negated liability of the 
tortfeasor whose fault preceded the intervention.246 Now, the rise of comparative responsibility 
has blunted the force of traditional rules about superseding and intervening causes.247 

Professor Wright summarizes: 
[W]hen there are multiple legally responsible causes of a specific injury, the issue 
arises as to how to apportion the liability among the multiple responsible causes, 

                                                
240 Id. at 169-170. 
241 Id.  
242 Id. at 169-170. 
243 See Mario J. Rizzo & Frank S. Arnold, Causal Apportionment in the Law of Torts: An Economic 
Theory, 80 COLUM. L. REV. 1399 (1980). See generally Richard W. Wright, The Grounds and Extent of 
Legal Responsibility, 40 SAN DIEGO L. REV. 1425 (2003); Richard W. Wright, Liability for Possible 
Wrongs: Causation, Statistical Probability, and the Burden of Proof, 41 LOY. L.A. L. REV. 1295 (2008) 
[hereinafter Wright, Statistical Probability]. 
244 Rizzo & Arnold, supra note 243, at 1400. 
245 See id. at 1400-01; RESTATEMENT (THIRD) OF TORTS: PHYSICAL & EMOTIONAL HARM § 34 cmt. c 
(2010) (explaining historical evolution from reliance on contribution to comparative assessment of 
responsibility). 
246 See Rizzo & Arnold, supra note 243, at 1401. 
247 RESTATEMENT (THIRD) OF TORTS: PHYSICAL & EMOTIONAL HARM § 34 cmt. c (2010). 
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which may include a negligent plaintiff as well as one or more defendants. Under a 
“joint and several” (or “solidary”) liability rule, which is the general rule in almost 
all legal systems, the plaintiff can recover the entirety of her damages, after 
proportionate reduction based on her percentage of comparative responsibility if 
she was contributorily negligent, from any one of the legally responsible defendants 
(tortfeasors). Any tortfeasor who pays the plaintiff can seek contribution from the 
other tortfeasors based on their respective percentages of comparative 
responsibility for any payment to the plaintiff in excess of the paying tortfeasor’s 
percentage of comparative responsibility. Under a “several” or “proportionate 
several liability” rule, which exists in many states in the United States for varying 
parts of the plaintiff’s damages due to so-called “tort reform,” the plaintiff may only 
recover from each tortfeasor a portion of her damages equal to that tortfeasor’s 
percentage of comparative responsibility. Comparative responsibility is usually 
based on comparative fault, although it may also take into account relative causal 
contribution if that is measurable.248 

Metro Aviation, Inc. v. United States249 illustrates the proportionate-several liability approach in 
the context of a settlement under a proportionate-several liability statute. Metro Aviation, which 
owned and operated a plane that fatally crashed, settled with the estates of the two passengers 
and then sued the United States for indemnity and contribution, seeking to recover the amounts it 
had paid in settlement.250 The Federal Tort Claims Act referred to state law for determination of 
liability.251 

The Montana statute at issue restated the general rule that each defendant was jointly and 
severally liable, with a right of contribution against other persons who were negligent. 
Defendants found to be less than 50% responsible, however, were responsible only for the 
percentage of liability attributable to them.252  

The Montana Supreme Court held that a potential defendant who settles in advance of trial or 
without filing a lawsuit may not bring an independent contribution action.253 Thus, because 
Metro Aviation was potentially liable for some fault, they could not seek indemnity from the 
FAA.254 

To make sense of proportionate-several liability statutes like this, one must understand the 
political campaign that led to their enactment. The insurance industry persuaded many state 
legislators that the tort liability system was broken because it often imposed high financial 

                                                
248 Wright, Introduction, supra note 179, at 453. 
249 Metro Aviation, Inc. v. United States, 2013 MT 193, 305 P.3d 832 (Mont. 2013). 
250 Id. at 833-34. 
251 Id. 
252 Id. at 834-35. 
253 Id. at 836-37. 
254 Id. at 838. 
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responsibility on entities that were only marginally responsible for accidents but had deep 
pockets.255 Thus, 50% responsibility thresholds were established. 
In some cases, the problem is that the plaintiff can prove that someone in a small group of actors 
was responsible for his injury, but he cannot prove which one.256 Joint-and-several liability 
doctrine permits holding all defendants liable even though no fault is apportioned. Then the court 
must apportion liability even though fault is not apportioned? In such cases, the courts typically 
shift the burden of proof to the defendants, holding each liable unless each defendant can prove 
he did not cause the injury.257 
The Seventh Circuit reviewed the conflicting approaches to apportioning liability and collecting 
judgments in Schadel v. Iowa Interstate R.R.258 The problem is complicated when some of the 
defendants settle, as in Schadel.259 It framed the issue as follows: 

Specifically, we must decide whether a non-settling railroad should be held liable 
for all damages suffered by its employee, reduced by an amount attributable to the 
employee’s comparative negligence and a settlement with a third party, or 
alternatively, if the railroad should be responsible only for its proportionate share 
of damages, taking into account the comparative fault of the employee and that of 
a settling third-party defendant. The district court allowed the jury to find the total 
damages suffered by the plaintiff, without regard to the settlement; it then reduced 
those damages by 50%, the amount representing the plaintiff’s negligence; and 
finally, using an Illinois standard, it applied a set-off against the balance owed by 
the railroad. While our reasons are not identical to those offered by the district 
court, we conclude that the result was correct, and we therefore affirm the 
judgment.260 

The differences among state law, not only for liability allocation, but also for other liability 
issues, makes choice of law controversies a regular feature of aviation accident litigation. In In re 
Colorado Springs Air Crash, the issue was “whether the remaining defendants’ share of liability 
[should] be reduced by the government’s proportionate share of liability, or by the actual amount 
paid in settlement.”261 Resolution of the issue depended on whether proportionate-several 
liability or the traditional joint and several liability was the rule. This presented a choice of law 
issue. Illinois and Washington followed the traditional joint and several rule; Colorado followed 
the proportionate-several rule.262 The court applied Illinois law, in part because it encourages 

                                                
255 See Richard W. Wright, The Logic and Fairness of Joint and Several Liability, 23 MEM. ST. U. L. REV. 
45, 50, 63-65, 81-82 (1992). 
256 See Wright, Statistical Probability, supra note 243, at 1299 (discussing Summers v. Tice, 199 P.2d 1 
(Cal. 1948) (involving uncertainty as to which shotgun fired a shotgun pellet)). 
257 Id. 
258 Schadel v. Iowa Interstate R.R., Ltd., 381 F.3d 671, 671, 675-76 (7th Cir. 2004). 
259 Id. at 677-79. 
260 Id. at 673. 
261 In re Colo. Springs Air Crash, 867 F. Supp. 630, 630 (N.D. Ill. 1994). 
262 Id. at 632-33. 
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settlements by making the settling party potentially liable for more than its pro-rata share if it 
does not settle.263 
Brewer v. Dodson Aviation involved products liability actions against the manufacturer of a dry 
air vacuum pump, the company that overhauled it, and the company that installed it.264 The 
litigation ensued from the loss of control and in-flight breakup of a Beechcraft aircraft, allegedly 
resulting from the failure of the vacuum pump that drove its critical instrument displays.265 
Determining liability and allocating responsibility required resolution of choice of law issues 
related to joint and several versus proportionate-several liability, the statute of limitations, and 
substantive products liability issues (consumer expectations, the existence of a negligent design 
claim, and assumption of the risk as a bar to liability).266 The court wrote: 

In Ohio, a defendant may be jointly and severally liable for all compensatory 
damages that represent economic loss in a tort action if the defendant was more 
than fifty percent at fault. Ohio Rev. Code Ann. §§ 2307.22–23. In Washington, 
product liability defendants are jointly and severally liable for the sum of their 
proportionate shares of the claimant’s total damages if the claimant was not at fault. 
RCW § 4.22.070(1)(b); RCW § 4.22.015. Thus, there is an actual conflict between 
Ohio’s and Washington’s joint and several liability rules.267 

Litigants and legislators will continue to argue over the rules for apportioning liability in 
indeterminate causation cases because the different approaches embody different policy 
choices. 

V. Special Characteristics of Drones 

In the drone accident realm, the rules for products liability and for apportioning liability among 
multiple tortfeasors are well-settled. Although the legal rules vary from state to state, the 
alternatives are well crystallized and sufficiently flexible to accommodate the facts of almost any 
drone accident case. The novelty of drone accident cases relates to the lower risks of serious 
injury or damage, more demanding proof of facts, and the fact that more data is needed to prove 
them. 

A. Limited Damages 
In some ways, conventional aviation accident litigation is a useful guide for drone accident 
litigation because both categories of tort liability involve aircraft. But, the dramatically different 
size and weight of drones as compared to helicopters and airplanes, the fact that drones do not 
carry people, and the fact that most small drones do not carry flammable fuel means that the 
damage associated with the most likely drone accidents is minimal compared to the damage 
associated with most commercial aircraft accidents. Manned aircraft carry people whose 
survivors are likely to sue if the aircraft disappears. This is not the case with drones. 

Indeed, one has to have a fairly vivid imagination to come up with a scenario in which an 

                                                
263 Id. at 636. 
264 Brewer v. Dodson Aviation, 447 F. Supp. 2d 1166, 1172-74, 1181 (W.D. Wash. 2006). 
265 Id. at 1172.  
266 Id. at 1177. 
267 Id. at 1178 (internal quotation marks omitted). 
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accident involving a small drone could result in a fatality. If a drone falls directly onto the heads 
of a crowd, it is unlikely to do more than bruise a few people, although it might cause a 
concussion or a skull fracture if it hits someone directly on the head while falling at an 
appreciable speed. If a drone were to be flown at high speed into someone horizontally, that 
could result in serious head, torso, or extremity injuries, but the scenario leading to that is 
unlikely barring a deliberate attack. Movie or television production might be an exception, when 
an actor or a drone is out of position.  

A drone falling on an automobile might break the windshield, depending on the collision speed. 
If it does, impact on the driver could be fatal, either directly or because it causes the driver to 
lose control of the vehicle.  
The morbidity and mortality associated with mid-air collisions involving drones and commercial 
aircraft is likely to be higher. If a drone impacts the rotor of a helicopter, especially the tail rotor, 
it could make the helicopter uncontrollable and result in a fatal crash.268 

It also is reasonable to think of drone strikes as analogous to bird strikes, which are a serious 
threat to helicopter operations and, less so, to fixed wing operations. Fixed wing aircraft usually 
fly higher than birds, except for the landing or take off phases of flight. The probability of a bird 
strike causing serious injury is approximately five per hundred thousand (an accident probability 
value found to be acceptable in the design of many aircraft components) and empirical analysis 
suggests that bird strikes remain more likely than drone strikes.269.  

If a drone collides with a large transport aircraft and causes a crash, it could result in many 
fatalities, but is it is hard to imagine how that may happen. A strike on the fuselage or on the 
leading edge of a wing or stabilizer might cause some damage but it would not interfere with 
aircraft control. A strike on the windscreen or ingestion into an engine might be more serious. 
While the flow around the windscreen on the nose of an aircraft deflects approaching objects 
from the windscreen, the same is not true of engine intakes. Indeed as the occasional instance of 
a ramp agent getting sucked into the intake of an engine shows, 270objects within a certain 
distance of the intake of a running engine are likely to be ingested by the flow pattern around the 
intake.  
Then, the question is whether the drone would break up, absorbing sufficient kinetic energy to 
avoid or minimize damage to the aircraft, or whether certain parts of it, such as such as a large 
lithium ion battery, would be sufficiently dense and hard to shift more of the kinetic energy of 
the collision to the aircraft. If that happens, aircraft components might deform or fracture to a 
greater extent. 

One must have a vivid imagination to construct a scenario in which a crash of a DJI Phantom, 
Mavic, Inspire, or an M600 capturing news imagery or taking promotional video of real estate 
would cause serious injuries. But, the possibility of accidents causing fatalities or serious injuries 
                                                
268 The author is a commercial helicopter pilot. Loss of a tail rotor makes any helicopter uncontrollable. 
269 Eli Dourado & Samuel Hammond, Do Consumer Drones Endanger the National Airspace? Evidence 
from Wildlife Strike Data, MERCATUS CENTER GEO. MASON U. (Mar. 14, 2016), 
https://www.mercatus.org/publication/do-consumer-drones-endanger-national-airspace-evidence-wildlife-
strike-data. 
270 Engineer sucked into engine aftermath, Liveleak, May 13, 2010, 
https://www.liveleak.com/view?i=1ae_1273782186. 
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is greater as one considers the risk exposure of drone systems flying beyond the line of sight to 
deliver packages in residential neighborhoods and cities. As drones become more complex, the 
risk that some component will fail increases. That is a statistical reality depending directly on the 
number of components. In addition, greater proximity of larger numbers of vehicles to larger 
numbers of people increases the risk of injury when a component failure does occur.  

Despite this, the risk of serious injury remains low, and this justifies a regulatory policy that 
facilitates getting new technologies to market quickly. The low risk also justifies shifting from a 
pre-sale regulatory approval strategy to post-sale products liability litigation, a subject 
considered more fully in section VII.A. The low level of damage and injury also means that it 
will not be worth suing over most accidents. The response to the question posed by this article’s 
title will be, “the victim pays.” Someone whose arm gets a small cut is not likely to sue. 

In any event, drone accidents will happen and some will result in lawsuits. Interesting questions 
will arise when a drone injures someone uninvolved in the drone operation or damages her 
property. Contracts between drone vendors and users and between participants and drone 
operators will attempt to limit the liability of the manufacturer of the drone and to indemnify the 
vendor even though it is the entity best able to cover the cost of an accident. 271 

                                                
271 The following is an excerpt of the language contained in the standard sales agreement for a 3DR Solo, 
a $1000 low-end professional drone:  

By downloading, copying, installing, or using all or any portion of the software, or any 
updates to the software (collectively, the “Software”), you accept all the terms of this 
agreement. 
. . . . 
6. Limited Warranty 
3DR warrants that the Software will perform substantially as described in its 
documentation during the 90-day period following the initial receipt of the Software by the 
original licensee. If the Software fails such warranty, your sole remedy and our sole 
obligation is to, at our option, replace the Software or refund the license fee paid for the 
Software (if any). If you obtained the Software from the Apple App Store, and the Software 
fails this limited warranty, you may contact Apple and request a refund of amounts you 
paid for the Software, if any. Apple is not responsible for any other claims relating to the 
Software, including third party claims of infringement. This limited warranty does not 
apply to Software provided to you on a tryout or evaluation basis. The foregoing limited 
warranty does not apply to any software that is not published by 3DR, for example, non-
3DR software applications that programmatically interoperate with the Software. 
7. Disclaimer 
THE LIMITED WARRANTY ABOVE IS THE ONLY WARRANTY OFFERED BY 
3DR, ITS AFFILIATES, SUPPLIERS, AND DISTRIBUTORS AND IT STATES THE 
SOLE AND EXCLUSIVE REMEDIES FOR 3DR’S, ITS AFFILIATES’, SUPPLIERS’, 
OR DISTRIBUTORS’ BREACH OF THAT WARRANTY. THE LIMITED 
WARRANTY ABOVE AND ANY STATUTORY WARRANTY AND REMEDY THAT 
CANNOT BE EXCLUDED OR LIMITED UNDER LAW ARE THE ONLY 
WARRANTIES APPLICABLE TO THE SOFTWARE. OTHER THAN THOSE 
OFFERED AND STATUTORY WARRANTIES AND REMEDIES, 3DR, ITS 
AFFILIATES, SUPPLIERS, AND DISTRIBUTORS DISCLAIM ALL WARRANTIES, 
CONDITIONS, REPRESENTATIONS, AND TERMS, EXPRESS OR IMPLIED, 
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The courts are showing little willingness to question the enforceability of such provisions in 
“clickwrap” agreements, which impose standard terms favoring the drafter of the contract on e-
commerce customers who have never read them.272 Even if consumers did read the agreement 
language, they have no bargaining power and no practical ability to contact anyone representing 
the other party to the contract who has the power to agree to any changes. The legal relationship, 
like the product, is automated beyond human control.  

B. More Challenging Proof of Facts 

Drone accidents are more likely to result from anomalies in navigation system software and radio 
signal processing than from mechanical failure or pilot error. Litigating a drone accident case 
successfully will require drilling down into the intricacies of automatic control circuit design, 
computer programming and radio engineering. 

C. More Evidence 

More data is likely to be available for drone accidents than for manned aircraft accidents because 

                                                
WHETHER BY STATUTE, COMMON LAW, CUSTOM, USAGE, OR OTHERWISE 
AS TO ANY MATTER, INCLUDING BUT NOT LIMITED TO PERFORMANCE, 
SECURITY, NON-INFRINGEMENT OF THIRD PARTY RIGHTS, INTEGRATION, 
MERCHANTABILITY, QUIET ENJOYMENT, SATISFACTORY QUALITY, AND 
FITNESS FOR ANY PARTICULAR PURPOSE. OTHER THAN SUCH OFFERED 
AND STATUTORY WARRANTIES AND REMEDIES, 3DR, ITS AFFILIATES, 
SUPPLIERS, AND DISTRIBUTORS PROVIDE THE SOFTWARE AS-IS AND WITH 
ALL FAULTS. 
8. Limitation of Liability 
EXCEPT FOR THE EXCLUSIVE REMEDY OFFERED BY 3DR ABOVE AND ANY 
REMEDIES THAT CANNOT BE EXCLUDED OR LIMITED UNDER LAW, 3DR, ITS 
AFFILIATES, SUPPLIERS, AND DISTRIBUTORS WILL NOT BE LIABLE TO YOU 
FOR ANY LOSS, DAMAGES, CLAIMS, OR COSTS WHATSOEVER INCLUDING 
ANY CONSEQUENTIAL, INDIRECT OR INCIDENTAL DAMAGES, ANY LOST 
PROFITS OR LOST SAVINGS, ANY DAMAGES RESULTING FROM BUSINESS 
INTERRUPTION, PERSONAL INJURY OR FAILURE TO MEET ANY DUTY OF 
CARE, OR CLAIMS BY A THIRD PARTY, EVEN IF A 3DR REPRESENTATIVE HAS 
BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSS, DAMAGES, CLAIMS, OR 
COSTS. IN ANY EVENT, 3DR’S AGGREGATE LIABILITY AND THAT OF ITS 
AFFILIATES, SUPPLIERS, AND DISTRIBUTORS WILL BE LIMITED TO THE 
REFUND OF THE AMOUNT PAID FOR THE SOFTWARE. 
THE FOREGOING WARRANTY, LIMITATIONS, AND EXCLUSIONS APPLY TO 
THE EXTENT PERMITTED BY APPLICABLE LAW IN YOUR JURISDICTION. YOU 
MAY HAVE RIGHTS THAT CANNOT BE WAIVED UNDER CONSUMER 
PROTECTION AND OTHER LAWS.  

Solo App End User License Agreement, 3DR, 
http://3dr.com/support/articles/208764226/solo_app_end_user_license_agreement/, (last visited Oct. 23, 
2016 5:58 PM). 
272 But see Berkson v. Gogo LLC, 97 F. Supp. 3d 359, 403 (E.D. N.Y. 2015) (holding clickwrap 
agreement unenforceable; reviewing and analyzing standards for enforcing shrinkwrap, clickwrap, and 
other contracts of adhesion); Meyer v. Kalanick, 199 F. Supp. 3d 725, 765 (S.D. N.Y. 2016) (holding 
arbitration agreement unenforceable because cellphone user ordering Uber did not have "reasonably 
conspicuous" notice). 
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even the least expensive drone generates large quantities of telemetry about its flight profiles and 
system behaviors. Additionally, drone flight crews will usually be available to testify, unlike 
many aircrews of manned aircraft involved in serious accidents. 

VI. Practical Litigation Issues 
A. Lining Up the Defendants 

The vast majority of product liability litigation involves substantial information asymmetry as 
between plaintiff and defendant. Typically, a plaintiff must plead generally and hope discovery 
produces specific facts that enable her to prove a case. At the same time, plaintiffs must be 
mindful of Fed. R. Civ. P. 11 and its counterparts in state procedural rules. Rule 11 requires a 
plaintiff to have a reasonable basis for asserting facts. It would violate Rule 11 to assert that an 
autopilot on a drone had a manufacturing defect if the plaintiff has absolutely no reason for 
believing that is the case. The mere possibility that manufacturing defects exist and that, 
statistically, a certain percentage of drones sold have autopilots with manufacturing defects is not 
enough. 
The plaintiff does not have to prove her case to avoid Rule 11 sanctions and losing at trial does 
not automatically result in Rule 11 sanctions. But, referring to the language of Rule 11—“to the 
best of the person's knowledge, information, and belief, formed after an inquiry reasonable under 
the circumstances . . . the factual contentions have evidentiary support or, if specifically so 
identified, will likely have evidentiary support after a reasonable opportunity for further 
investigation or discovery”—plaintiff’s counsel needs to be able to explain her reasonable basis 
for pleading facts. 

This need interacts with legal doctrine. As § 519 explains, delivering an abnormally dangerous 
product into the stream of commerce can result in liability when it causes injury, even without 
proving fault. So, a plaintiff who pleads an abnormally dangerous product claim under section 
519 need only have a reasonable basis for believing causation and the characteristics that make 
the product abnormally dangerous and need not have a basis for believing that the product 
vendor was negligent in its design or manufacture. Similarly, when the tort doctrine of res ipsa 
loquitor applies, the plaintiff need not assert conduct relating to the design or manufacture 
because fault is inferred from the fact of the accident. 

Rule 11, however, also imposes obligations with respect to legal assertions as well as factual 
allegations. Rule 11 requires that “the claims, defenses, and other legal contentions are warranted 
by existing law or by a nonfrivolous argument for extending, modifying, or reversing existing 
law or for establishing new law.”273  

At the pleading stage, the plaintiff should make sure to name every potential defendant against 
whom a claim can be asserted, consistent with Rule 11. Further investigation and discovery will 
cause some of these defendants to be dismissed and the case against others to be relatively 
stronger or weaker depending on the evidence and the power of the trial counsel's story to move 
the fact finder.  

                                                
273 Fed. R. Civ. P. 11(b)(2). See Zuk v. Eastern Pa. Psychiatric Institute of the Medical College of 
Pennsylvania 103 F.3d 294, 299 (3d Cir. 1996). 
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Accordingly, a central part of assessing the case is to lay out from a theoretical standpoint 
everything that anyone might have done wrong that could have contributed to the mishap. 
A starting point is to a define characteristics of the drone that could make it abnormally 
dangerous:  

• It has sharp edges on its rotors that are capable of inflicting lacerations and serious 
injuries to eyes  

• It has one or more dense batteries which will not shatter on impact and can inflict bruises 
and fractures 

• It is capable flying almost 40 miles an hour at 3 feet above the ground, a height at which 
it easily can contact human beings 

• The range with which it is controllable by an operator is limited; beyond that range it is 
not controlled by anyone 

The next step is to identify areas of possible fault in many cases.  
Perhaps the vendor was negligent.274 For example:  

• The basic configuration (quadcopter versus hexacopter or octocopter) was inappropriate 
for missions advertised by the vendor; it could have reduced risk by delivering a 
hexacopter or octocopter configuration which would have been more likely to recover 
safely from a single engine failure and which would have had the useful weight necessary 
to carry additional safety devices, such as parachutes or airbags 

• Specific features of the propulsion system were designed so as to allow open circuits, 
short-circuits, and other electrical malfunction to be induced by vibrations and shocks 
that could be expected in operation 

• The rotors, motors, and booms were designed and manufactured so as to allow them to 
separate in flight 

• The navigation and attitude control systems were designed and manufactured to be 
insufficiently robust  

• Only one GPS receiver allows for a higher probability of lost-GPS lock  
• Placement and design of the GPS antennas allows too great a probability of lost GPS lock 
• Interference between other components of the drone and the GPS system were not 

properly considered in the design process 
• The attitude control system was not designed and manufactured to permit stable flight by 

a reasonably competent remote pilot in the event of loss of GPS lock 
• The sensors for determining height above the ground, magnetic heading, speed, and 

orientation were inadequate under foreseeable flight conditions 
• The drone lacked autonomous safety features  
• Its return to home feature was unreliable 
• Its land immediately feature was unreliable or too difficult to trigger 

                                                
274 The vendor will not have done all the design and manufacture of all the subsystems itself; indeed, is 
extremely likely that it would have bought some components off-the-shelf from other manufacturers. 
When multiple designers and manufacturers are involved, the same types of faults should be pleaded 
against each of them as is consistent with their roles. Investigation and discovery should be tailored 
accordingly. 
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• The autonomous features made it too difficult for the operator to regain manual control 
• The autonomous systems made it likely that the operator could accidentally trigger a 

flyaway 
• The default settings for the autonomous systems were not the safest ones 
• It was too difficult for an average operator to navigate the menu structure to set 

appropriate values for autonomous systems and flight envelopes 

Perhaps the operator was negligent. For example:  

• The operator was unfamiliar with how to operate the drone and how to trigger safety 
features  

• The operator did not conduct an adequate preflight inspection, which would have 
revealed faults and how the drone would perform 

• The operator allowed the drone to fly beyond the operator’s line of sight  
• The operator allowed the drone to fly above 400 feet  
• The operator flew the drone from a moving vehicle in a congested area  
• The operators input the wrong values for the autonomous systems  
• The operator failed to use a visual observer  
• The operator positioned the visual observer in an inappropriate place  
• The operator and the visual observer failed to communicate effectively with each other  
• The operator failed to secure the operating area and to make sure that people not 

connected to the operation were not in danger  
• The operator failed to ensure that meteorological conditions were suitable for the mission  

B. Joinder Strategies for Plaintiffs  

A plaintiff may, of course, name as a defendant anyone who conceivably might bear some 
responsibility for the accident.275 Some defendants may be dropped as the case proceeds by 
amending the complaint if the plaintiff discovers she cannot prove a case against them. 
Alternatively, the court also may dismiss the case against a defendant on the pleadings or by 
summary judgment if he or she persuades the court that the plaintiff has not demonstrated the 
potential to succeed on the merits against that party.  

There are also other non-merits-based reasons a plaintiff might exclude potential defendants. The 
court in which she filed her suit might lack personal jurisdiction over them, or she may be unable 
to serve them. The plaintiff may also choose not to include these parties if their joinder may 
destroy diversity jurisdiction in the situation where she wants to file her suit in federal court.276  

After the plaintiff has chosen whom to name as a defendant, her available resources will 
inevitably drive her strategy. Proving negligence or defect in high technology products is 
extremely challenging. Expert witnesses, simulations, laboratory and flight tests, and extensive 
data analysis almost certainly will be necessary to establish her claim that the hardware or 

                                                
275 Rule 11 and its state counterparts limit this to the parties against which there are reasonable grounds to 
believe that evidence can be developed that prove their liability. 
276 Conversely, she may want to name a non-diverse defendant, even though she has only a weak case 
against that party, to defeat federal diversity jurisdiction and make sure she stays in state court. 
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software in the drone was either defective or malfunctioned. Except in large class actions,277 the 
plaintiff is not likely to have the resources to undertake the investigation necessary to uncover 
evidence to mount a successful suit. But, if she can prove her case against a single defendant, she 
will effectively shift the burden to that defendant to prove other defendants were partially at 
fault.  

This will only work, however, in certain circumstances. In a proportionate-several liability 
jurisdiction, any defendant can reduce its liability by showing that another party was partially 
responsible. However, if such a defendant reduces its own liability substantially by persuading 
the fact finder that the percentage of responsibility allocable to an absent defendant is substantial, 
the plaintiff will get no judgment against the absent potential defendant. 
Alternatively, in common-law joint and several liability, the original defendant must implead 
other defendants to seek contribution. Otherwise, the original defendant gains nothing by proving 
that another party was also partially responsible.  

In either situation, however, the plaintiff pursues the strategy of naming only one defendant at 
her peril, as it allows the defendant to cast blame on unnamed parties. For example, suppose the 
plaintiff sues only the entity whose brand is on the drone, against whom she has a strong res ipsa 
loquitur argument. This would allow the defendant to argue that another entity, such as the 
supplier of the off-the-shelf control software of the machine, was ultimately the negligent party 
or otherwise delivered a defective product. A conclusion by the fact finder that this supplier was 
primarily responsible for causing the accident may then be enough to defeat the plaintiff’s res 
ipsa loquitur argument. Or, if the defendant successfully argues that fault for the accident lies 
solely with an unrelated subsystem supplier, the original defendant may be absolved of all 
liability. 

In this situation, the plaintiff’s fate may be tied to whether she can amend her pleading to join 
this third party. If she cannot, res judicata will bar a second lawsuit against this third party. In 
colloquial terms, the plaintiff gets only one bite at the apple. 

C. Availability of Evidence 

Much aviation litigation involves guesswork as to what happened because the aircrew is killed in 
the crash. Not all aircraft giving rise to crash litigation have cockpit voice recorders and flight 
data recorders. The pilot community complains that this makes it too easy to blame the pilot, 
who is not available to defend himself. It is also true, however, that when the pilot is available, 
his testimony may make it easier to pin the blame on him, as in the Penn Maritime case. The 
court’s extensive explanation about why operator error was at least as likely as any other cause 
made it clear that the master’s testimony undermined his position. 
TWA Flight 800 crashed into the Atlantic Ocean on 17 July 1996. The most extensive and 
expensive NTSB investigation in history, supported by FBI and CIA resources, concluded that 
the crash was caused by an explosion of fuel-air vapors in the center fuselage fuel tank, ignited 

                                                
277 The possibility of larger recoveries in class actions provides an economic incentive to finance the cost 
of litigation. 
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by an unknown source, maybe a short circuit in the fuel quantity measuring system.278 Other 
causes for an explosion, including missile impacts, were ruled out. Debate continues 30 years 
later about the cause of the crash, with conspiracy theories abounding.279  

The allegations in one of the original complaints, filed in Missouri state court,280 illustrate the 
legal theories asserted by the passengers’ survivors: 

COUNT I 
NEGLIGENCE OF DEFENDANT BOEING 

12. Plaintiffs herein reavert and reallege each prior allegation as if specifically 
restated herein, paragraph for paragraph and word for word. 

13. Defendant Boeing owed duties to Plaintiffs and Plaintiffs' decedent to use due 
care and circumspection in its design, manufacture, testing, inspection, sale, 
marketing, distribution, and injection into the stream of commerce the subject 
Boeing 747-100 aircraft. 

14. Notwithstanding it duties, Defendant Boeing breached its duties in the 
following particulars: 

a. when it negligently designed, manufactured, tested, inspected and 
misrepresented as airworthy the subject Boeing 747-100 aircraft with a dangerous 
and defective fuel storage and delivery system, and negligently sold, distributed, 
marketed, and injected into the stream of commerce a dangerous and defective 
aircraft; 
b. when it negligently designed, manufactured, tested, inspected and 
misrepresented as airworthy the subject Boeing 747-100 aircraft with disregard to 
the propensity and probability of fire and explosion in the fuselage fuel tanks, i.e., 
the existence of an explosive atmosphere above the fuel, the pressures and 
temperatures possible in the atmosphere above the fuel, the possible sources of 
ignition of the atmosphere above the fuel, etc.; 
c. when it negligently failed to set a reasonable cycle life and time for the fuselage 
strict use on the subject Boeing 747-100 aircraft; 
d. when it negligently failed to perform a complete ‘failure mode and effect 
analysis’ on the fuel storage and delivery system for the subject Boeing 747-100 
aircraft; 

                                                
278 Accident Report: In-flight Breakup Over the Atlantic Ocean, Transworld Airlines Flight 800, 
NTSB/AAR-000/03, NAT’L TRANSP. SAFETY BD. xvi (July 17, 1996), 
http://www.ntsb.gov/investigations/AccidentReports/Reports/AAR0003.pdf. 
279 See Lahr v. Nat’l Transp. Safety Bd., 569 F.3d 964, 971 (9th Cir. 2009) (affirming in part and 
reversing in part FOIA decision on more than 150 requests by conspiracy theorist). 
280 First Amended Complaint Clara Ersoz at 5-16, In re Air Crash on July 17, 1996, No. 96-CV-7986, 
1998 WL 292333 (S.D.N.Y. June 2, 1998), ECF No. 112, 1998 WL 34778577 (appending Complaint, 
Ersoz v. Trans World Airlines, Inc., No. 22972-97, (Mo. Cir. Ct. 22d Cir. Feb. 10, 1997)). 
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e. when it negligently failed to provide adequate, safe methods for discharging 
static electricity which could foreseeably build up near the fuselage fuel storage and 
delivery systems on the subject Boeing 747-100 aircraft; 

f. when it negligently failed to adequately isolate the heat sources from the fuselage 
fuel storage system on the subject Boeing 747-100 aircraft; 

g. when it negligently failed to fully comply with the design and manufacturing 
requirements of 14 C.F.R. sec. 21.3, 25.981 and 25.1309 with regard to the fuel 
storage and delivery system on the subject Boeing 747-100 aircraft; 
h. when it negligently failed to instruct and/or warn users and consumers of the 
dangers inherent in the subject Boeing 747-100 aircraft, including its dangerous 
and defective fuel delivery and storage system; and 

i. when it was generally negligent in its design, manufacture, engineering, testing, 
inspection, representation, instruction, and warning as to use, operation, and 
maintenance of the fuel system on the subject Boeing 747-100 aircraft. 
15. The July 17, 1996, failure of the subject Boeing 747-100 aircraft being operated 
by TWA as TWA flight 800, the resulting explosion, crash, injuries, and death, and 
Boeing's conduct in that regard as referenced above was grossly negligent, 
outrageous, and/or showed a reckless indifference to the rights of Plaintiffs' 
decedent and others, or showed complete indifference or conscious disregard for 
the safety of Plaintiffs' decedent and others, and Plaintiffs and the survivors of the 
estate of Clara Jean Ersoz are entitled to punitive and exemplary damages. 

16. As a proximate result of Defendant Boeing's negligence, gross negligence, and 
outrageous and reckless conduct, Plaintiffs and the survivors of the estate of Clara 
Jean Ersoz suffered substantial injuries, and Plaintiffs' decedent suffered substantial 
injuries and death as more fully explained below. 

COUNT II 
PRODUCTS LIABILITY OF DEFENDANT BOEING 

17. Plaintiffs herein reavert and reallege each prior allegation as if specifically 
restated herein, paragraph for paragraph and word for word. 

18. Defendant Boeing, in the business of designing, manufacturing, inspecting, 
testing, selling, marketing, and distributing Boeing 747-100 aircraft, is liable to 
Plaintiffs for products liability in that it designed, manufactured, inspected, tested, 
sold, marketed, distributed, and injected into the stream of commerce the subject 
Boeing 747-100 aircraft when it was in an unsafe, dangerous, and defective 
condition. 

19. Defendant Boeing designed, manufactured, sold, marketed, distributed, and 
injected into the stream of commerce the subject Boeing 747-100 aircraft 
containing substandard and defective fuel system design, guarding and warning. 
Defendant Boeing disregarded: (i) the possibilities and probabilities of fire and 
explosion in the fuselage fuel tanks (i.e., the existence of an explosive atmosphere 
above the fuel, the pressures and temperatures possible in the atmosphere above the 
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fuel, the possible sources of ignition of the atmosphere above the fuel, etc.); (ii) a 
reasonable cycle life for the fuselage strict use; (iii) discharge of static electricity 
which could build up near the fuselage fuel storage system; and (iv) heat source 
isolation from the fuselage fuel storage system. 
20. Defendant Boeing also failed to perform a complete ‘failure mode and effect 
analysis’ on the fuel storage and delivery system for the subject Boeing 747-100 
aircraft, and failed to fully comply with the design and manufacture requirements 
of 14 C.F.R. sec. 21.3, 25.981 and 25.1309 with regard to said system. 
21. Defendant Boeing had both actual and constructive knowledge of the defects at 
the time of the sale of the subject Boeing 747-100 aircraft and, thus, its conduct was 
outrageous and/or showed reckless indifference to the rights of Plaintiffs' decedent 
and showed complete indifference to and conscious disregard for the safety of 
Plaintiffs' decedent and others, and Plaintiffs and the survivors of the estate of Clara 
Jean Ersoz are entitled to punitive and exemplary damages. 
22. As a proximate result of the defects in the subject Boeing 747-100 aircraft and 
Defendant Boeing's outrageous and reckless conduct in that regard, Plaintiffs and 
the survivors of the estate of Clara Jean Ersoz suffered substantial injuries, and 
Plaintiffs' decedent suffered substantial injuries and death as more fully explained 
below." The complaint also alleged claims against the operator, TWA.281 

The complaint explicitly pleads facts to support: 

• Common-law negligence duty,282 
• Breach of the duty with respect to nine specific aspects of the design and testing of the 

aircraft and its subsystems,283 
• Causation.284 

It also pleads products liability by pleading: 

• Defective aircraft,285 
• Defective systems, specifically identifying four such systems,286 
• Failure to perform adequate testing,287 
• Causation.288 

In In re Air Crash Off Long Island, New York, on July 17, 1996, the United States Court of 
Appeals for the Second Circuit affirmed the district court's refusal to dismiss civil damages 
actions growing out of the crash of TWA Flight 800.289 The appeal covered 145 cases 

                                                
281 Id. 
282 Id. at 8 ¶ 13. 
283 Id. at 7-9 ¶ 14. 
284 Id. at 9-10 ¶ 16. 
285 Id. at 10 ¶ 18. 
286 Id. ¶ 19. 
287 Id. ¶ 20 
288 Id. at 11 ¶ 22. 
289 In re Air Crash on July 17, 1996, 209 F.3d 200, 215 (2d Cir. 2000). 
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consolidated for pretrial proceedings by the Judicial Panel on Multidistrict Litigation.290 The 
appeal involved only the question of whether the Death on the High Seas Act barred recovery for 
non-pecuniary damages. The Second Circuit held that it did not,291 opening the way for 
settlement of the claims. Therefore, there are no reported judicial opinions on the merits of the 
negligence and products liability claims.  

Parallel FOIA litigation over the investigation, however, illustrates the types of information 
likely to be generated and fought over in products liability litigation involving complex systems. 
To reach its conclusions, the NTSB did extensive simulations and animations projecting the 
effect of various system failures and external forces.292 

Among many other things the FOIA plaintiff requested the software and data used in the CIA 
and NTSB simulations.293 The court of appeals approved withholding three memoranda and draft 
reports under FOIA's deliberative process exemption, which resembles the work-product 
privilege in civil litigation.294 It also approved withholding simulation software and data, because 
it was privileged national security information in one case, and because the requested data was 
not used in the investigation in the other case.295 

Two facts make the evidence available in drone liability litigation different from usual aviation 
litigation. First, the remote pilot is likely to be alive and available to testify.296 Second, most 
drones keep elaborate data on flight telemetry, enabling a more robust forensic investigation as 
to what went wrong.297 

In drone accidents that result in injuries, the police likely would do a fairly thorough accident 
investigation. An early and urgent priority of this investigation would be to ensure that the drone, 
and particularly whatever software and data it might contain, gets preserved. Then, at an 
appropriate point after suit is filed, the plaintiff and any other parties can serve a request for 
production on the drone vendor to get a copy of the software and any data it saved. Whether or 
not the operator has the data, and whether or not it is preserved on storage in the drone, it likely 
was uploaded to the vendor. As long as the requesting party shares the cost, E-discovery caselaw 
makes it clear that a party responding to a request for production has an obligation to render the 
requested information into an understandable form.298 

                                                
290 Id. at 200 (describing procedural history). 
291 Id. at 215. 
292 See Lahr v. Nat’l Trans. Safety Bd. 569 F.3d 964, 969-71 (reviewing investigation). 
293 Id. at 972. 
294 Id. at 983-84. 
295 Id. at 985-86. 
296 Most serious manned aircraft accidents are fatal to the pilot. 
297 Many general aviation aircraft do not have cockpit voice recorders or flight data recorders. 
298 In re Toyota Motor Corp. Unintended Accel. Mktg., Sales Practices, and Prods. Liab. Litig., 978 F. 
Supp. 2d 1053 (C.D. Cal. 2013) (suggesting that a vendor's failure to provide for recording of data 
relevant to a malfunction may relax the proof standards to which a plaintiff is held.); id. at 1080 (noting 
that Toyota's engine control module software lacks an event-logging facility and therefore expert need not 
identify specific software fault). 
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D. Economics of Litigating 

Section V.A, infra, argues that drone crashes are unlikely to result in injury or damage. That 
means that the amount at stake for almost any drone accident is likely going to be too small to 
persuade a lawyer to get involved on a contingency basis and almost certainly not large enough 
to cover the fact-finding and marshaling of proof necessary to mount a strong case. But, this is 
not uncommon in consumer products liability litigation.299 
Most consumer products liability plaintiffs get past this by filing a class-action lawsuit; however, 
this type of lawsuit may not be feasible in most drone accident cases. The requirements for class 
action status under Rule 23 of the Federal Rules of Civil Procedure, and under virtually every 
state procedural system, are (1) numerosity, (2) commonality, (3) typicality, and (4) adequacy of 
representation. Each one of these is problematic in the drone accident context.  

First, the numerosity requirement will likely be undermined because an incident involving a 
single drone is not likely to injure more than one or two people, even a popular model is unlikely 
to be involved in many accidents involving injuries. Second, each accident is likely to have 
unusual circumstances in which defects in the drone’s physical systems will combine with 
human behavior in unique ways. The circumstances leading up to each accident, the physical 
environment, the wind, the distance between drone and operator, and what the operator does will 
be different in each case. That will weaken both the commonality and typicality arguments for 
forming a class.  

Finally, the quality of the representation may be significantly lower for drone crashes than is 
typical for a 787 crash. The proof difficulty may be greater in a drone case and the incentives for 
the best mass tort lawyers to participate energetically and with all their resources is reduced.  
As in any class action, identifying a consistent course of conduct that breaches the duty of care is 
helpful, not only to establish liability, but also to get a class certified. Design defects in software 
are attractive possibilities in this regard, as are inadequate provision of product support. All the 
possibilities identified in section VI.A may produce a pattern of malfunctions that help with the 
commonality and typicality elements 

VII. Law’s Role 
The approach proposed in Making civilian drones safe: performance standards, self-
certification, and post-sale data collection300 represents the best technology policy for drones. 
That article proposes that traditional regulatory obstacles for drone vendors be abandoned in 
order to allow them to bring their products and new technologies to market more quickly. Part of 
the bargain proposed, however, is that these vendors must be accountable for shortcomings 

                                                
299 Small drones are consumer products, based on their mass production and relatively low value, even 
though they are used as capital products. Understanding the litigation possibilities, benefits from thinking 
of them as consumer products. 
300 Henry H. Perritt, Jr. & Albert J. Plawinski, Making civilian drones safe: performance standards, self-
certification, and post-sale data collection, 14 NW. J. TECH. & INTELL. PROP. 1 (2016) [hereinafter 
Making Civilian Drones Safe]. 
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discovered in the marketplace. Part of that accountability is paying the cost of injuries their 
products cause, especially when the injuries results from poor product support. 

A. Data Collection and Analysis  

In Making Civilian Drones Safe, Albert Plawinski and this article’s author argue the low risk of a 
drone crash causing serious damage or injury justifies a lighter pre-sale regulatory touch, but 
greater attention to post-sale data collection and remedial action, the remedial action being 
design changes. The article’s proposal also would change accident litigation compared with, for 
example, the typical light airplane or helicopter crash, because it would make far more post-
accident data available.301  

A drone may be defective because its designer fails to conduct sufficient testing, 302 such as 
verifying flight characteristics verification and the functionality of its automated emergency 
protocol. But, adequate testing requires data. One regulatory proposition which would ensure 
that designers conduct sufficient testing requires designers to collect data and evaluate it 
according to certain criteria and algorithms.303 This approach, however, steers the drone 
certification process in the direction of traditional certification, which is overly burdensome.  

A presale flight-test program, resembling that for conventional airworthiness certification, is not 
necessary. Thousands of drones are already flying with safety subsystems that collect this sort of 
data. 
Most of the microdrones on the market collect data on flight profiles and parameter values so 
that they can be fed down to the DROP through a telemetry link (usually a channel on the control 
link). Many also provide the option of uploading the data to a website so that one can review 
flight profiles graphically or otherwise. As more of these vehicles are sold and flown, an 
enormous stockpile of data will be generated.  

The advantage of this approach is that it does not impose delays and regulatory costs before 
vendors bring new technology to market. It accomplishes this by aligning regulatory 
requirements with market forces. Drone vendors already advertise product safety features and 
this would enable them to bolster their marketing efforts using data-based indicia of safety.  

The suggested approach presents two challenges: first, ensuring that the data is captured and 
second, that it is transmitted to the ground. The first challenge is easier to meet than the second, 
                                                
301 See NTSB letter to Michael P. Huerta, Administrator, Federal Aviation Administration, A-15-1 
through -8 (Jan 22, 2015), https://www.ntsb.gov/safety/safety-recs/recletters/A-15-001-008.pdf 
(recommending flight data recorders and cockpit voice recorders). 
302 See First Amended Complaint Clara Ersoz at 7-9 ¶14, 10 ¶ 20, In re Air Crash on July 17, 1996, No. 
96-CV-7986, 1998 WL 292333 (S.D.N.Y. June 2, 1998), ECF No. 112, 1998 WL 34778577 (alleging 
failure to “perform a complete ‘failure mode and effect analysis”). 
303 See, Jeffrey C. Elias et al., Large School Bus Safety Restraint Evaluation, No. 313, NAT’L HIGHWAY 
TRAFFIC SAFETY ADMIN., 
http://www.nhtsa.gov/DOT/NHTSA/NRD/Multimedia/PDFs/ESV/18/Files/18ESV-000313.pdf 
(illustrating test data evaluation methodology); Chapter 7, Use of Nondestructive Testing in the 
Evaluation of Airport Pavements, FAA AC No. 150/5370-11B, FED. AVIATION ADMIN. 37-69 (Sep. 30, 
2011), http://www.faa.gov/documentLibrary/media/Advisory_Circular/150_5370_11b.pdf (illustrating 
evaluation of test data). 
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as most drones in production today already have the capability to collect the relevant data.304 But 
uploading data from the drone requires human intervention. One possibility is to upload data 
every time drone firmware is updated. Because both DJI and 3DR require firmware updates 
before the drone will fly, users must establish an Internet connection to the drone before using it. 
Uploading log data easily can be made an invisible prerequisite for downloading the software 
update. 
Vendors would capture and record data regarding the drone’s position and the state of its GPS 
system, as well as the flight path data from its IMU and magnetometer and barometric altimeter 
values. The frequency of data capture might be once per second—the same as that transmitted by 
ADS-B out.305 Frequency of capture need to be high to make sure that system state is recorded 
before a mishap occurs. 

Tort law can reinforce the incentives to collect post-sale data, simply by shifting the burden of 
proof to a defendant who does not collect data, as in the Toyota case discussed in section 
IV.B.5.b).306 

B. Recalls 

When post-sale data shows a defect in drone performance, the vendor can cut off liability by 
recalling the drones.307 This is exactly what GoPro did in late 2016, after experience in the 
market showed that its first drone had a defect in its power management system. 308 The expense 
and adverse reputational effect of recall provides an incentive for vendors to deliver defect-free 
products. 
The Restatement (Third) of Torts: Products Liability does not impose a general duty to recall 
defective products.309 It does, however, impose such a duty when a recall has been mandated by 
a regulatory agency,310 or when the vendor voluntarily undertakes a recall.311 

                                                
304 Most microdrones on the market capable of carrying cameras and performing commercial work 
capture data on position and state of the GPS system. Typically, they allow the DROP to specify that 
some or all of these data be downlinked to the DROPCON as telemetry. Many also record the data by 
writing it to an onboard memory chip such as an SD card in the form of log files. 
305 See The Ins and Outs of ADS-B, FED. AVIATION ADMIN. (last visited March 10, 2017 4:14 PM), 
https://www.faa.gov/nextgen/equipadsb/ins_and_outs/ (explaining ADS-B).  
306 In re Toyota Motor Corp. Unintended Acceleration Marketing, Sales Practices, and Products Liability 
Litigation, 978 F. Supp. 2d 1053, 1102 (C.D. Cal. 2013) (“[T]he Camry software does nothing to track its 
own failures.”). 
307 Making Civilian Drones Safe, supra note 300, at 5 (evaluating alternative recall processes). 
308 See Christina Cardoza, GoPro recalls the Karma drone, INTERDRONE (Nov. 9, 2016, 10:43 AM), 
http://www.interdrone.com/news/gopro-recalls-the-karma-
drone?utm_campaign=InterDrone+News&utm_source=hs_email&utm_medium=email&utm_content=37
406994&_hsenc=p2ANqtz-8_No2oX9ePeKTzsLusqCd_ot1G5-
7vcvHLzbAq5jTGbPZejIgY4AQY99IbG-
62hZQUFXDUBR_NqKeNgYEYUb_RC4Z2_A&_hsmi=37406994 (reporting that GoPro recalled all its 
Karma drones because of a defect that causes the drones to lose power in flight). 
309 RESTATEMENT (THIRD) OF TORTS: PRODUCTS LIABILITY § 11, § 11 cmt. a (1998). 
310 Id. § 11(a)(1), § 11 cmt. b. 
311 Id. § 11(a)(2), § 11 cmt. c. 
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C. Waiting for Reality 

Regulation in a modern state takes two basic forms: ex ante and ex post. Ex ante regulation is 
crafted by legislatures and administrative agencies exercising delegated legislative power. It 
prohibits the sale or use of a product unless it meets certain standards or restricts how they are 
used. Design criteria for aircraft, speed limits for automobiles, and rules of the road for water 
vessels are examples. Ex post regulation, on the other hand, takes the form of lawsuits filed in 
response to accidents that have already occurred, shifting the cost of harms suffered back to the 
manufacturer. 
Ex ante regulation has the benefit of producing greater certainty, but it inhibits choice in the 
marketplace. Ex post regulation permits actors to do almost anything they want but imposes 
consequences on actors that make the wrong choices. Ex post regulation results in considerable 
uncertainty about what might produce liability and what might not.  
Law is often criticized for being behind technology. That is not a weakness; it is a strength. I 
have often written that the law should lag technology. For, if law were to lead technology, 
innovation would be stifled. What is legal ultimately depends on guesses by lawmakers about the 
most promising directions of technological development. Those guesses are rarely correct. When 
law follows technology, it is able to fill in gaps and correct the directions of other societal forces 
that shape behavior: economic stress, embedded societal pressure, and private lawsuits. 
Here is how law should work: a new technology is developed. A few entrepreneurs build it into 
their business plans. In some cases it will be successful and spread; in most cases it will not. New 
technologies that spread successfully will impact other economic players. They will threaten to 
erode market shares; they will confront non-adopters with the necessity of utilizing new 
technology to remain economically viable.  

New technology will probably cause accidents, injuring and killing some of its users and injuring 
the property and persons of bystanders. Widespread use of the technology will also have adverse 
effects on other intangible interests, such as privacy and intellectual property. Those suffering 
injury will seek compensation from those using the technology and try to get them to stop using 
it.  
Most of these disputes will be resolved privately without recourse to governmental institutions of 
any kind, but some of them will find their way to court. Lawyers will have little difficulty 
framing the disputes in terms of well-established rights, duties, privileges, powers, and liabilities. 
The courts will hear the cases, with lawyers on opposing sides presenting creative arguments as 
to how the law should be understood in light of new technology. Judicial decisions will result, 
carefully explaining where the new technology fits most appropriately within long-accepted legal 
principles.  

Law professors, journalists, and interest groups will write about the judicial opinions and 
gradually, conflicting views will crystallize as to whether the judge-interpreted law is correct for 
channeling the technology’s benefits and costs. Eventually, if the matter has sufficient political 
traction, someone will propose a bill in a city council, state legislature, or the United States 
Congress to change the standards being applied by the courts. Alternately, an administrative 
agency will issue a notice of proposed rulemaking and a debate over codification of legal 
principles will begin.  
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This is a protracted, complex, and unpredictable process, and that may make it seem undesirable. 
But, it is beneficial because the adversarial, deliberative interplay that results from a process like 
this produces good law. It is the only way to test legal ideas thoroughly and assess their fit with 
the actual costs and benefits of technology as it is actually deployed in a market economy. 
Accordingly, understanding tort liability for drone mishaps is an essential aspect of 
understanding and crafting drone regulation.312 
 

                                                
312 Making Civilian Drones Safe, supra note 300, at 35 (suggesting tort claims for mis-self-certification). 


